UTR-LM
Pre-trained model on 5’ untranslated region (5’UTR) using masked language modeling (MLM), Secondary Structure (SS), and Minimum Free Energy (MFE) objectives.
Statement
A 5’ UTR Language Model for Decoding Untranslated Regions of mRNA and Function Predictions is published in Nature Machine Intelligence, which is a Closed Access / Author-Fee journal.
Machine learning has been at the forefront of the movement for free and open access to research.
We see no role for closed access or author-fee publication in the future of machine learning research and believe the adoption of these journals as an outlet of record for the machine learning community would be a retrograde step.
The MultiMolecule team is committed to the principles of open access and open science.
We do NOT endorse the publication of manuscripts in Closed Access / Author-Fee journals and encourage the community to support Open Access journals and conferences.
Please consider signing the Statement on Nature Machine Intelligence.
Disclaimer
This is an UNOFFICIAL implementation of the A 5’ UTR Language Model for Decoding Untranslated Regions of mRNA and Function Predictions by Yanyi Chu, Dan Yu, et al.
The OFFICIAL repository of UTR-LM is at a96123155/UTR-LM.
Warning
The MultiMolecule team is unable to confirm that the provided model and checkpoints are producing the same intermediate representations as the original implementation.
This is because
The proposed method is published in a Closed Access / Author-Fee journal.
The team releasing UTR-LM did not write this model card for this model so this model card has been written by the MultiMolecule team.
Model Details
UTR-LM is a bert-style model pre-trained on a large corpus of 5’ untranslated regions (5’UTRs) in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the Training Details section for more information on the training process.
Variations
Model Specification
Variants |
Num Layers |
Hidden Size |
Num Heads |
Intermediate Size |
Num Parameters (M) |
FLOPs (G) |
MACs (G) |
Max Num Tokens |
UTR-LM MRL |
6 |
128 |
16 |
512 |
1.21 |
0.35 |
0.18 |
1022 |
UTR-LM TE_EL |
Links
Usage
The model file depends on the multimolecule
library. You can install it using pip:
Bash |
---|
| pip install multimolecule
|
Direct Use
You can use this model directly with a pipeline for masked language modeling:
Python |
---|
| >>> import multimolecule # you must import multimolecule to register models
>>> from transformers import pipeline
>>> unmasker = pipeline("fill-mask", model="multimolecule/utrlm.te_el")
>>> unmasker("gguc<mask>cucugguuagaccagaucugagccu")
[{'score': 0.07707168161869049,
'token': 23,
'token_str': '*',
'sequence': 'G G U C * C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.07588472962379456,
'token': 5,
'token_str': '<null>',
'sequence': 'G G U C C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.07178673148155212,
'token': 9,
'token_str': 'U',
'sequence': 'G G U C U C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.06414645165205002,
'token': 10,
'token_str': 'N',
'sequence': 'G G U C N C U C U G G U U A G A C C A G A U C U G A G C C U'},
{'score': 0.06385370343923569,
'token': 12,
'token_str': 'Y',
'sequence': 'G G U C Y C U C U G G U U A G A C C A G A U C U G A G C C U'}]
|
Downstream Use
Here is how to use this model to get the features of a given sequence in PyTorch:
Python |
---|
| from multimolecule import RnaTokenizer, UtrLmModel
tokenizer = RnaTokenizer.from_pretrained("multimolecule/utrlm.te_el")
model = UtrLmModel.from_pretrained("multimolecule/utrlm.te_el")
text = "UAGCUUAUCAGACUGAUGUUGA"
input = tokenizer(text, return_tensors="pt")
output = model(**input)
|
Sequence Classification / Regression
Note: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.
Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:
Python |
---|
| import torch
from multimolecule import RnaTokenizer, UtrLmForSequencePrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/utrlm.te_el")
model = UtrLmForSequencePrediction.from_pretrained("multimolecule/utrlm.te_el")
text = "UAGCUUAUCAGACUGAUGUUGA"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])
output = model(**input, labels=label)
|
Token Classification / Regression
Note: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for nucleotide classification or regression.
Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:
Python |
---|
| import torch
from multimolecule import RnaTokenizer, UtrLmForTokenPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/utrlm.te_el")
model = UtrLmForTokenPrediction.from_pretrained("multimolecule/utrlm.te_el")
text = "UAGCUUAUCAGACUGAUGUUGA"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))
output = model(**input, labels=label)
|
Note: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.
Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:
Python |
---|
| import torch
from multimolecule import RnaTokenizer, UtrLmForContactPrediction
tokenizer = RnaTokenizer.from_pretrained("multimolecule/utrlm.te_el")
model = UtrLmForContactPrediction.from_pretrained("multimolecule/utrlm.te_el")
text = "UAGCUUAUCAGACUGAUGUUGA"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))
output = model(**input, labels=label)
|
Training Details
UTR-LM used a mixed training strategy with one self-supervised task and two supervised tasks, where the labels of both supervised tasks are calculated using ViennaRNA.
- Masked Language Modeling (MLM): taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
- Secondary Structure (SS): predicting the secondary structure of the
<mask>
token in the MLM task.
- Minimum Free Energy (MFE): predicting the minimum free energy of the 5’ UTR sequence.
Training Data
The UTR-LM model was pre-trained on 5’ UTR sequences from three sources:
- Ensembl Genome Browser: Ensembl is a genome browser for vertebrate genomes that supports research in comparative genomics, evolution, sequence variation and transcriptional regulation. UTR-LM used 5’ UTR sequences from 5 species: human, rat, mouse, chicken, and zebrafish, since these species have high-quality and manual gene annotations.
- Human 5′ UTR design and variant effect prediction from a massively parallel translation assay: Sample et al. proposed 8 distinct 5’ UTR libraries, each containing random 50 nucleotide sequences, to evaluate translation rules using mean ribosome loading (MRL) measurements.
- High-Throughput 5’ UTR Engineering for Enhanced Protein Production in Non-Viral Gene Therapies: Cao et al. analyzed endogenous human 5’ UTRs, including data from 3 distinct cell lines/tissues: human embryonic kidney 293T (HEK), human prostate cancer cell (PC3), and human muscle tissue (Muscle).
UTR-LM preprocessed the 5’ UTR sequences in a 4-step pipeline:
- removed all coding sequence (CDS) and non-5’ UTR fragments from the raw sequences.
- identified and removed duplicate sequences
- truncated the sequences to fit within a range of 30 to 1022 bp
- filtered out incorrect and low-quality sequences
Note RnaTokenizer
will convert “T”s to “U”s for you, you may disable this behaviour by passing replace_T_with_U=False
.
Training Procedure
Preprocessing
UTR-LM used masked language modeling (MLM) as one of the pre-training objectives. The masking procedure is similar to the one used in BERT:
- 15% of the tokens are masked.
- In 80% of the cases, the masked tokens are replaced by
<mask>
.
- In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
- In the 10% remaining cases, the masked tokens are left as is.
PreTraining
The model was trained on two clusters:
- 4 NVIDIA V100 GPUs with 16GiB memories.
- 4 NVIDIA P100 GPUs with 32GiB memories.
Citation
BibTeX:
BibTeX |
---|
| @article {chu2023a,
author = {Chu, Yanyi and Yu, Dan and Li, Yupeng and Huang, Kaixuan and Shen, Yue and Cong, Le and Zhang, Jason and Wang, Mengdi},
title = {A 5{\textquoteright} UTR Language Model for Decoding Untranslated Regions of mRNA and Function Predictions},
elocation-id = {2023.10.11.561938},
year = {2023},
doi = {10.1101/2023.10.11.561938},
publisher = {Cold Spring Harbor Laboratory},
abstract = {The 5{\textquoteright} UTR, a regulatory region at the beginning of an mRNA molecule, plays a crucial role in regulating the translation process and impacts the protein expression level. Language models have showcased their effectiveness in decoding the functions of protein and genome sequences. Here, we introduced a language model for 5{\textquoteright} UTR, which we refer to as the UTR-LM. The UTR-LM is pre-trained on endogenous 5{\textquoteright} UTRs from multiple species and is further augmented with supervised information including secondary structure and minimum free energy. We fine-tuned the UTR-LM in a variety of downstream tasks. The model outperformed the best-known benchmark by up to 42\% for predicting the Mean Ribosome Loading, and by up to 60\% for predicting the Translation Efficiency and the mRNA Expression Level. The model also applies to identifying unannotated Internal Ribosome Entry Sites within the untranslated region and improves the AUPR from 0.37 to 0.52 compared to the best baseline. Further, we designed a library of 211 novel 5{\textquoteright} UTRs with high predicted values of translation efficiency and evaluated them via a wet-lab assay. Experiment results confirmed that our top designs achieved a 32.5\% increase in protein production level relative to well-established 5{\textquoteright} UTR optimized for therapeutics.Competing Interest StatementThe authors have declared no competing interest.},
URL = {https://www.biorxiv.org/content/early/2023/10/14/2023.10.11.561938},
eprint = {https://www.biorxiv.org/content/early/2023/10/14/2023.10.11.561938.full.pdf},
journal = {bioRxiv}
}
|
Please use GitHub issues of MultiMolecule for any questions or comments on the model card.
Please contact the authors of the UTR-LM paper for questions or comments on the paper/model.
License
This model is licensed under the AGPL-3.0 License.
Text Only |
---|
| SPDX-License-Identifier: AGPL-3.0-or-later
|
multimolecule.models.utrlm
RnaTokenizer
Bases: Tokenizer
Tokenizer for RNA sequences.
Parameters:
Name |
Type |
Description |
Default |
alphabet
|
Alphabet | str | List[str] | None
|
alphabet to use for tokenization.
- If is
None , the standard RNA alphabet will be used.
- If is a
string , it should correspond to the name of a predefined alphabet. The options include
standard
extended
streamline
nucleobase
- If is an alphabet or a list of characters, that specific alphabet will be used.
|
None
|
nmers
|
int
|
Size of kmer to tokenize.
|
1
|
codon
|
bool
|
Whether to tokenize into codons.
|
False
|
replace_T_with_U
|
bool
|
Whether to replace T with U.
|
True
|
do_upper_case
|
bool
|
Whether to convert input to uppercase.
|
True
|
Examples:
Python Console Session>>> from multimolecule import RnaTokenizer
>>> tokenizer = RnaTokenizer()
>>> tokenizer('<pad><cls><eos><unk><mask><null>ACGUNRYSWKMBDHV.X*-I')["input_ids"]
[1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2]
>>> tokenizer('acgu')["input_ids"]
[1, 6, 7, 8, 9, 2]
>>> tokenizer('acgt')["input_ids"]
[1, 6, 7, 8, 9, 2]
>>> tokenizer = RnaTokenizer(replace_T_with_U=False)
>>> tokenizer('acgt')["input_ids"]
[1, 6, 7, 8, 3, 2]
>>> tokenizer = RnaTokenizer(nmers=3)
>>> tokenizer('uagcuuauc')["input_ids"]
[1, 83, 17, 64, 49, 96, 84, 22, 2]
>>> tokenizer = RnaTokenizer(codon=True)
>>> tokenizer('uagcuuauc')["input_ids"]
[1, 83, 49, 22, 2]
>>> tokenizer('uagcuuauca')["input_ids"]
Traceback (most recent call last):
ValueError: length of input sequence must be a multiple of 3 for codon tokenization, but got 10
Source code in multimolecule/tokenisers/rna/tokenization_rna.py
Python |
---|
| class RnaTokenizer(Tokenizer):
"""
Tokenizer for RNA sequences.
Args:
alphabet: alphabet to use for tokenization.
- If is `None`, the standard RNA alphabet will be used.
- If is a `string`, it should correspond to the name of a predefined alphabet. The options include
+ `standard`
+ `extended`
+ `streamline`
+ `nucleobase`
- If is an alphabet or a list of characters, that specific alphabet will be used.
nmers: Size of kmer to tokenize.
codon: Whether to tokenize into codons.
replace_T_with_U: Whether to replace T with U.
do_upper_case: Whether to convert input to uppercase.
Examples:
>>> from multimolecule import RnaTokenizer
>>> tokenizer = RnaTokenizer()
>>> tokenizer('<pad><cls><eos><unk><mask><null>ACGUNRYSWKMBDHV.X*-I')["input_ids"]
[1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2]
>>> tokenizer('acgu')["input_ids"]
[1, 6, 7, 8, 9, 2]
>>> tokenizer('acgt')["input_ids"]
[1, 6, 7, 8, 9, 2]
>>> tokenizer = RnaTokenizer(replace_T_with_U=False)
>>> tokenizer('acgt')["input_ids"]
[1, 6, 7, 8, 3, 2]
>>> tokenizer = RnaTokenizer(nmers=3)
>>> tokenizer('uagcuuauc')["input_ids"]
[1, 83, 17, 64, 49, 96, 84, 22, 2]
>>> tokenizer = RnaTokenizer(codon=True)
>>> tokenizer('uagcuuauc')["input_ids"]
[1, 83, 49, 22, 2]
>>> tokenizer('uagcuuauca')["input_ids"]
Traceback (most recent call last):
ValueError: length of input sequence must be a multiple of 3 for codon tokenization, but got 10
"""
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
alphabet: Alphabet | str | List[str] | None = None,
nmers: int = 1,
codon: bool = False,
replace_T_with_U: bool = True,
do_upper_case: bool = True,
additional_special_tokens: List | Tuple | None = None,
**kwargs,
):
if codon and (nmers > 1 and nmers != 3):
raise ValueError("Codon and nmers cannot be used together.")
if codon:
nmers = 3 # set to 3 to get correct vocab
if not isinstance(alphabet, Alphabet):
alphabet = get_alphabet(alphabet, nmers=nmers)
super().__init__(
alphabet=alphabet,
nmers=nmers,
codon=codon,
replace_T_with_U=replace_T_with_U,
do_upper_case=do_upper_case,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.replace_T_with_U = replace_T_with_U
self.nmers = nmers
self.condon = codon
def _tokenize(self, text: str, **kwargs):
if self.do_upper_case:
text = text.upper()
if self.replace_T_with_U:
text = text.replace("T", "U")
if self.condon:
if len(text) % 3 != 0:
raise ValueError(
f"length of input sequence must be a multiple of 3 for codon tokenization, but got {len(text)}"
)
return [text[i : i + 3] for i in range(0, len(text), 3)]
if self.nmers > 1:
return [text[i : i + self.nmers] for i in range(len(text) - self.nmers + 1)] # noqa: E203
return list(text)
|
UtrLmConfig
Bases: PreTrainedConfig
This is the configuration class to store the configuration of a UtrLmModel
.
It is used to instantiate a UTR-LM model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the UTR-LM
a96123155/UTR-LM architecture.
Configuration objects inherit from PreTrainedConfig
and can be used to
control the model outputs. Read the documentation from PreTrainedConfig
for more information.
Parameters:
Name |
Type |
Description |
Default |
vocab_size
|
int
|
Vocabulary size of the UTR-LM model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling [UtrLmModel ].
|
26
|
hidden_size
|
int
|
Dimensionality of the encoder layers and the pooler layer.
|
128
|
num_hidden_layers
|
int
|
Number of hidden layers in the Transformer encoder.
|
6
|
num_attention_heads
|
int
|
Number of attention heads for each attention layer in the Transformer encoder.
|
16
|
|
int
|
Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.
|
512
|
hidden_dropout
|
float
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
0.1
|
attention_dropout
|
float
|
The dropout ratio for the attention probabilities.
|
0.1
|
max_position_embeddings
|
int
|
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
|
1026
|
initializer_range
|
float
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
0.02
|
layer_norm_eps
|
float
|
The epsilon used by the layer normalization layers.
|
1e-12
|
position_embedding_type
|
str
|
|
'rotary'
|
is_decoder
|
bool
|
Whether the model is used as a decoder or not. If False , the model is used as an encoder.
|
False
|
use_cache
|
bool
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if config.is_decoder=True .
|
True
|
emb_layer_norm_before
|
bool
|
Whether to apply layer normalization after embeddings but before the main stem of the network.
|
False
|
token_dropout
|
bool
|
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
|
False
|
Examples:
Python Console Session>>> from multimolecule import UtrLmModel, UtrLmConfig
>>> # Initializing a UTR-LM multimolecule/utrlm style configuration
>>> configuration = UtrLmConfig()
>>> # Initializing a model (with random weights) from the multimolecule/utrlm style configuration
>>> model = UtrLmModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in multimolecule/models/utrlm/configuration_utrlm.py
Python |
---|
| class UtrLmConfig(PreTrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UtrLmModel`][multimolecule.models.UtrLmModel].
It is used to instantiate a UTR-LM model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the UTR-LM
[a96123155/UTR-LM](https://github.com/a96123155/UTR-LM) architecture.
Configuration objects inherit from [`PreTrainedConfig`][multimolecule.models.PreTrainedConfig] and can be used to
control the model outputs. Read the documentation from [`PreTrainedConfig`][multimolecule.models.PreTrainedConfig]
for more information.
Args:
vocab_size:
Vocabulary size of the UTR-LM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`UtrLmModel`].
hidden_size:
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers:
Number of hidden layers in the Transformer encoder.
num_attention_heads:
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size:
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_dropout:
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout:
The dropout ratio for the attention probabilities.
max_position_embeddings:
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range:
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps:
The epsilon used by the layer normalization layers.
position_embedding_type:
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder:
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache:
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
emb_layer_norm_before:
Whether to apply layer normalization after embeddings but before the main stem of the network.
token_dropout:
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
Examples:
>>> from multimolecule import UtrLmModel, UtrLmConfig
>>> # Initializing a UTR-LM multimolecule/utrlm style configuration
>>> configuration = UtrLmConfig()
>>> # Initializing a model (with random weights) from the multimolecule/utrlm style configuration
>>> model = UtrLmModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
"""
model_type = "utrlm"
def __init__(
self,
vocab_size: int = 26,
hidden_size: int = 128,
num_hidden_layers: int = 6,
num_attention_heads: int = 16,
intermediate_size: int = 512,
hidden_act: str = "gelu",
hidden_dropout: float = 0.1,
attention_dropout: float = 0.1,
max_position_embeddings: int = 1026,
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
position_embedding_type: str = "rotary",
is_decoder: bool = False,
use_cache: bool = True,
emb_layer_norm_before: bool = False,
token_dropout: bool = False,
head: HeadConfig | None = None,
lm_head: MaskedLMHeadConfig | None = None,
ss_head: HeadConfig | None = None,
mfe_head: HeadConfig | None = None,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.is_decoder = is_decoder
self.use_cache = use_cache
self.emb_layer_norm_before = emb_layer_norm_before
self.token_dropout = token_dropout
self.head = HeadConfig(**head if head is not None else {})
self.lm_head = MaskedLMHeadConfig(**lm_head if lm_head is not None else {})
self.ss_head = HeadConfig(**ss_head) if ss_head is not None else None
self.mfe_head = HeadConfig(**mfe_head) if mfe_head is not None else None
|
Bases: UtrLmPreTrainedModel
Examples:
Python Console Session>>> from multimolecule import UtrLmConfig, UtrLmForContactPrediction, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForContactPrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=torch.randint(2, (1, 5, 5)))
>>> output["logits"].shape
torch.Size([1, 5, 5, 2])
>>> output["loss"]
tensor(..., grad_fn=<NllLossBackward0>)
Source code in multimolecule/models/utrlm/modeling_utrlm.py
Python |
---|
| class UtrLmForContactPrediction(UtrLmPreTrainedModel):
"""
Examples:
>>> from multimolecule import UtrLmConfig, UtrLmForContactPrediction, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForContactPrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=torch.randint(2, (1, 5, 5)))
>>> output["logits"].shape
torch.Size([1, 5, 5, 2])
>>> output["loss"] # doctest:+ELLIPSIS
tensor(..., grad_fn=<NllLossBackward0>)
"""
def __init__(self, config: UtrLmConfig):
super().__init__(config)
self.utrlm = UtrLmModel(config, add_pooling_layer=True)
self.contact_head = ContactPredictionHead(config)
self.head_config = self.contact_head.config
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Tensor | NestedTensor,
attention_mask: Tensor | None = None,
position_ids: Tensor | None = None,
head_mask: Tensor | None = None,
inputs_embeds: Tensor | NestedTensor | None = None,
labels: Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
**kwargs,
) -> Tuple[Tensor, ...] | ContactPredictorOutput:
if output_attentions is False:
warn("output_attentions must be True for contact classification and will be ignored.")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.utrlm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=True,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
output = self.contact_head(outputs, attention_mask, input_ids, labels)
logits, loss = output.logits, output.loss
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ContactPredictorOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
Bases: UtrLmPreTrainedModel
Examples:
Python Console Session>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForMaskedLM(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=input["input_ids"])
>>> output["logits"].shape
torch.Size([1, 7, 26])
>>> output["loss"]
tensor(..., grad_fn=<NllLossBackward0>)
Source code in multimolecule/models/utrlm/modeling_utrlm.py
Python |
---|
| class UtrLmForMaskedLM(UtrLmPreTrainedModel):
"""
Examples:
>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForMaskedLM(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=input["input_ids"])
>>> output["logits"].shape
torch.Size([1, 7, 26])
>>> output["loss"] # doctest:+ELLIPSIS
tensor(..., grad_fn=<NllLossBackward0>)
"""
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config: UtrLmConfig):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `UtrLmForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.utrlm = UtrLmModel(config, add_pooling_layer=False)
self.lm_head = MaskedLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Tensor | NestedTensor,
attention_mask: Tensor | None = None,
position_ids: Tensor | None = None,
head_mask: Tensor | None = None,
inputs_embeds: Tensor | NestedTensor | None = None,
encoder_hidden_states: Tensor | None = None,
encoder_attention_mask: Tensor | None = None,
labels: Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
**kwargs,
) -> Tuple[Tensor, ...] | MaskedLMOutput:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.utrlm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
output = self.lm_head(outputs, labels)
logits, loss = output.logits, output.loss
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MaskedLMOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
UtrLmForPreTraining
Bases: UtrLmPreTrainedModel
Examples:
Python Console Session>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForPreTraining(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels_mlm=input["input_ids"])
>>> output["loss"]
tensor(..., grad_fn=<AddBackward0>)
>>> output["logits"].shape
torch.Size([1, 7, 26])
>>> output["contact_map"].shape
torch.Size([1, 5, 5, 2])
Source code in multimolecule/models/utrlm/modeling_utrlm.py
Python |
---|
| class UtrLmForPreTraining(UtrLmPreTrainedModel):
"""
Examples:
>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForPreTraining(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels_mlm=input["input_ids"])
>>> output["loss"] # doctest:+ELLIPSIS
tensor(..., grad_fn=<AddBackward0>)
>>> output["logits"].shape
torch.Size([1, 7, 26])
>>> output["contact_map"].shape
torch.Size([1, 5, 5, 2])
"""
_tied_weights_keys = [
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"pretrain.predictions.decoder.weight",
"pretrain.predictions.decoder.bias",
"pretrain.predictions_ss.decoder.weight",
"pretrain.predictions_ss.decoder.bias",
]
def __init__(self, config: UtrLmConfig):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `UtrLmForPreTraining` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.utrlm = UtrLmModel(config, add_pooling_layer=False)
self.pretrain = UtrLmPreTrainingHeads(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.pretrain.predictions.decoder
def set_output_embeddings(self, embeddings):
self.pretrain.predictions.decoder = embeddings
def forward(
self,
input_ids: Tensor | NestedTensor,
attention_mask: Tensor | None = None,
position_ids: Tensor | None = None,
head_mask: Tensor | None = None,
inputs_embeds: Tensor | NestedTensor | None = None,
encoder_hidden_states: Tensor | None = None,
encoder_attention_mask: Tensor | None = None,
labels_mlm: Tensor | None = None,
labels_contact: Tensor | None = None,
labels_ss: Tensor | None = None,
labels_mfe: Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
**kwargs,
) -> Tuple[Tensor, ...] | UtrLmForPreTrainingOutput:
if output_attentions is False:
warn("output_attentions must be True for contact classification and will be ignored.")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.utrlm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=True,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
total_loss, logits, contact_map, secondary_structure, minimum_free_energy = self.pretrain(
outputs,
attention_mask,
input_ids,
labels_mlm=labels_mlm,
labels_contact=labels_contact,
labels_ss=labels_ss,
labels_mfe=labels_mfe,
)
if not return_dict:
output = (logits,) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return UtrLmForPreTrainingOutput(
loss=total_loss,
logits=logits,
contact_map=contact_map,
secondary_structure=secondary_structure,
minimum_free_energy=minimum_free_energy,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
UtrLmForSequencePrediction
Bases: UtrLmPreTrainedModel
Examples:
Python Console Session>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForSequencePrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=torch.tensor([[1]]))
>>> output["logits"].shape
torch.Size([1, 2])
>>> output["loss"]
tensor(..., grad_fn=<NllLossBackward0>)
Source code in multimolecule/models/utrlm/modeling_utrlm.py
Python |
---|
| class UtrLmForSequencePrediction(UtrLmPreTrainedModel):
"""
Examples:
>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForSequencePrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=torch.tensor([[1]]))
>>> output["logits"].shape
torch.Size([1, 2])
>>> output["loss"] # doctest:+ELLIPSIS
tensor(..., grad_fn=<NllLossBackward0>)
"""
def __init__(self, config: UtrLmConfig):
super().__init__(config)
self.utrlm = UtrLmModel(config, add_pooling_layer=True)
self.sequence_head = SequencePredictionHead(config)
self.head_config = self.sequence_head.config
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Tensor | NestedTensor,
attention_mask: Tensor | None = None,
position_ids: Tensor | None = None,
head_mask: Tensor | None = None,
inputs_embeds: Tensor | NestedTensor | None = None,
labels: Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
**kwargs,
) -> Tuple[Tensor, ...] | SequencePredictorOutput:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.utrlm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
output = self.sequence_head(outputs, labels)
logits, loss = output.logits, output.loss
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequencePredictorOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
UtrLmForTokenPrediction
Bases: UtrLmPreTrainedModel
Examples:
Python Console Session>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForTokenPrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=torch.randint(2, (1, 5)))
>>> output["logits"].shape
torch.Size([1, 5, 2])
>>> output["loss"]
tensor(..., grad_fn=<NllLossBackward0>)
Source code in multimolecule/models/utrlm/modeling_utrlm.py
Python |
---|
| class UtrLmForTokenPrediction(UtrLmPreTrainedModel):
"""
Examples:
>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmForTokenPrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=torch.randint(2, (1, 5)))
>>> output["logits"].shape
torch.Size([1, 5, 2])
>>> output["loss"] # doctest:+ELLIPSIS
tensor(..., grad_fn=<NllLossBackward0>)
"""
def __init__(self, config: UtrLmConfig):
super().__init__(config)
self.utrlm = UtrLmModel(config, add_pooling_layer=True)
self.token_head = TokenPredictionHead(config)
self.head_config = self.token_head.config
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Tensor | NestedTensor,
attention_mask: Tensor | None = None,
position_ids: Tensor | None = None,
head_mask: Tensor | None = None,
inputs_embeds: Tensor | NestedTensor | None = None,
labels: Tensor | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
**kwargs,
) -> Tuple[Tensor, ...] | TokenPredictorOutput:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.utrlm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
output = self.token_head(outputs, attention_mask, input_ids, labels)
logits, loss = output.logits, output.loss
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenPredictorOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
UtrLmModel
Bases: UtrLmPreTrainedModel
Examples:
Python Console Session>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmModel(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input)
>>> output["last_hidden_state"].shape
torch.Size([1, 7, 128])
>>> output["pooler_output"].shape
torch.Size([1, 128])
Source code in multimolecule/models/utrlm/modeling_utrlm.py
Python |
---|
| class UtrLmModel(UtrLmPreTrainedModel):
"""
Examples:
>>> from multimolecule import UtrLmConfig, UtrLmModel, RnaTokenizer
>>> config = UtrLmConfig()
>>> model = UtrLmModel(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input)
>>> output["last_hidden_state"].shape
torch.Size([1, 7, 128])
>>> output["pooler_output"].shape
torch.Size([1, 128])
"""
def __init__(self, config: UtrLmConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.pad_token_id = config.pad_token_id
self.embeddings = UtrLmEmbeddings(config)
self.encoder = UtrLmEncoder(config)
self.pooler = UtrLmPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def forward(
self,
input_ids: Tensor | NestedTensor,
attention_mask: Tensor | None = None,
position_ids: Tensor | None = None,
head_mask: Tensor | None = None,
inputs_embeds: Tensor | NestedTensor | None = None,
encoder_hidden_states: Tensor | None = None,
encoder_attention_mask: Tensor | None = None,
past_key_values: Tuple[Tuple[Tensor, Tensor, Tensor, Tensor], ...] | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
**kwargs,
) -> Tuple[Tensor, ...] | BaseModelOutputWithPoolingAndCrossAttentions:
r"""
Args:
encoder_hidden_states:
Shape: `(batch_size, sequence_length, hidden_size)`
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask:
Shape: `(batch_size, sequence_length)`
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values:
Tuple of length `config.n_layers` with each tuple having 4 tensors of shape
`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache:
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
if kwargs:
warn(
f"Additional keyword arguments `{', '.join(kwargs)}` are detected in "
f"`{self.__class__.__name__}.forward`, they will be ignored.\n"
"This is provided for backward compatibility and may lead to unexpected behavior."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if isinstance(input_ids, NestedTensor):
input_ids, attention_mask = input_ids.tensor, input_ids.mask
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
if input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device # type: ignore[union-attr]
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = (
input_ids.ne(self.pad_token_id)
if self.pad_token_id is not None
else torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
|
forward
Python |
---|
| forward(input_ids: Tensor | NestedTensor, attention_mask: Tensor | None = None, position_ids: Tensor | None = None, head_mask: Tensor | None = None, inputs_embeds: Tensor | NestedTensor | None = None, encoder_hidden_states: Tensor | None = None, encoder_attention_mask: Tensor | None = None, past_key_values: Tuple[Tuple[Tensor, Tensor, Tensor, Tensor], ...] | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, return_dict: bool | None = None, **kwargs) -> Tuple[Tensor, ...] | BaseModelOutputWithPoolingAndCrossAttentions
|
Parameters:
Name |
Type |
Description |
Default |
encoder_hidden_states
|
Tensor | None
|
Shape: (batch_size, sequence_length, hidden_size)
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
|
None
|
encoder_attention_mask
|
Tensor | None
|
Shape: (batch_size, sequence_length)
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1] :
- 1 for tokens that are not masked,
- 0 for tokens that are masked.
|
None
|
past_key_values
|
Tuple[Tuple[Tensor, Tensor, Tensor, Tensor], ...] | None
|
Tuple of length config.n_layers with each tuple having 4 tensors of shape
`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up
decoding.
If past_key_values are used, the user can optionally input only the last decoder_input_ids (those
that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of
all decoder_input_ids of shape (batch_size, sequence_length) .
|
None
|
use_cache
|
bool | None
|
If set to True , past_key_values key value states are returned and can be used to speed up decoding
(see past_key_values ).
|
None
|
Source code in multimolecule/models/utrlm/modeling_utrlm.py
Python |
---|
| def forward(
self,
input_ids: Tensor | NestedTensor,
attention_mask: Tensor | None = None,
position_ids: Tensor | None = None,
head_mask: Tensor | None = None,
inputs_embeds: Tensor | NestedTensor | None = None,
encoder_hidden_states: Tensor | None = None,
encoder_attention_mask: Tensor | None = None,
past_key_values: Tuple[Tuple[Tensor, Tensor, Tensor, Tensor], ...] | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
return_dict: bool | None = None,
**kwargs,
) -> Tuple[Tensor, ...] | BaseModelOutputWithPoolingAndCrossAttentions:
r"""
Args:
encoder_hidden_states:
Shape: `(batch_size, sequence_length, hidden_size)`
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask:
Shape: `(batch_size, sequence_length)`
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values:
Tuple of length `config.n_layers` with each tuple having 4 tensors of shape
`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache:
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
if kwargs:
warn(
f"Additional keyword arguments `{', '.join(kwargs)}` are detected in "
f"`{self.__class__.__name__}.forward`, they will be ignored.\n"
"This is provided for backward compatibility and may lead to unexpected behavior."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if isinstance(input_ids, NestedTensor):
input_ids, attention_mask = input_ids.tensor, input_ids.mask
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
if input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device # type: ignore[union-attr]
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = (
input_ids.ne(self.pad_token_id)
if self.pad_token_id is not None
else torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
|
UtrLmPreTrainedModel
Bases: PreTrainedModel
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
Source code in multimolecule/models/utrlm/modeling_utrlm.py
Python |
---|
| class UtrLmPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = UtrLmConfig
base_model_prefix = "utrlm"
supports_gradient_checkpointing = True
_no_split_modules = ["UtrLmLayer", "UtrLmEmbeddings"]
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|