Skip to content

Dataset

multimolecule.data.Dataset

Bases: Dataset

The base class for all datasets.

Dataset is a subclass of datasets.Dataset that provides additional functionality for handling structured data. It has three main features:

  • column identification: identify the special columns (sequence and structure columns) in the dataset.
  • tokenization: tokenize the sequence columns in the dataset using a pretrained tokenizer.
  • task inference: infer the task type and level of each label column in the dataset.

Attributes:

Name Type Description
tasks NestedDict

A nested dictionary of the inferred tasks for each label column in the dataset.

tokenizer PreTrainedTokenizerBase

The pretrained tokenizer to use for tokenization.

truncation bool

Whether to truncate sequences that exceed the maximum length of the tokenizer.

max_seq_length int

The maximum length of the input sequences.

data_cols List

The names of all columns in the dataset.

feature_cols List

The names of the feature columns in the dataset.

label_cols List

The names of the label columns in the dataset.

sequence_cols List

The names of the sequence columns in the dataset.

column_names_map Mapping[str, str] | None

A mapping of column names to new column names.

preprocess bool

Whether to preprocess the dataset.

Parameters:

Name Type Description Default
data Table | DataFrame | dict | list | str

The dataset. This can be a path to a file, a tag on the Hugging Face Hub, a pyarrow.Table, a dict, a list, or a pandas.DataFrame.

required
split NamedSplit

The split of the dataset.

required
tokenizer PreTrainedTokenizerBase | None

A pretrained tokenizer to use for tokenization. Either tokenizer or pretrained must be specified.

None
pretrained str | None

The name of a pretrained tokenizer to use for tokenization. Either tokenizer or pretrained must be specified.

None
feature_cols List | None

The names of the feature columns in the dataset. Will be inferred automatically if not specified.

None
label_cols List | None

The names of the label columns in the dataset. Will be inferred automatically if not specified.

None
id_cols List | None

The names of the ID columns in the dataset. Will be inferred automatically if not specified.

None
preprocess bool | None

Whether to preprocess the dataset. Preprocessing involves pre-tokenizing the sequences using the tokenizer. Defaults to True.

None
auto_rename_cols bool | None

Whether to automatically rename columns to standard names. Only works when there is exactly one feature column / one label column. You can control the naming through multimolecule.defaults.SEQUENCE_COL_NAME and multimolecule.defaults.LABEL_COL_NAME. For more refined control, use column_names_map.

None
column_names_map Mapping[str, str] | None

A mapping of column names to new column names. This is useful for renaming columns to inputs that are expected by a model. Defaults to None.

None
truncation bool | None

Whether to truncate sequences that exceed the maximum length of the tokenizer. Defaults to False.

None
max_seq_length int | None

The maximum length of the input sequences. Defaults to the model_max_length of the tokenizer.

None
tasks Mapping[str, Task] | None

A mapping of column names to tasks. Will be inferred automatically if not specified.

None
discrete_map Mapping[str, int] | None

A mapping of column names to discrete mappings. This is useful for mapping the raw value to nominal value in classification tasks. Will be inferred automatically if not specified.

None
nan_process str

How to handle NaN and inf values in the dataset. Can be “ignore”, “error”, “drop”, or “fill”. Defaults to “ignore”.

'ignore'
fill_value str | int | float

The value to fill NaN and inf values with. Defaults to 0.

0
info DatasetInfo | None

The dataset info.

None
indices_table Table | None

The indices table.

None
fingerprint str | None

The fingerprint of the dataset.

None
Source code in multimolecule/data/dataset.py
Python
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
class Dataset(datasets.Dataset):
    r"""
    The base class for all datasets.

    Dataset is a subclass of [`datasets.Dataset`][] that provides additional functionality for handling structured data.
    It has three main features:

    - column identification: identify the special columns (sequence and structure columns) in the dataset.
    - tokenization: tokenize the sequence columns in the dataset using a pretrained tokenizer.
    - task inference: infer the task type and level of each label column in the dataset.

    Attributes:
        tasks: A nested dictionary of the inferred tasks for each label column in the dataset.
        tokenizer: The pretrained tokenizer to use for tokenization.
        truncation: Whether to truncate sequences that exceed the maximum length of the tokenizer.
        max_seq_length: The maximum length of the input sequences.
        data_cols: The names of all columns in the dataset.
        feature_cols: The names of the feature columns in the dataset.
        label_cols: The names of the label columns in the dataset.
        sequence_cols: The names of the sequence columns in the dataset.
        column_names_map: A mapping of column names to new column names.
        preprocess: Whether to preprocess the dataset.

    Args:
        data: The dataset. This can be a path to a file, a tag on the Hugging Face Hub, a pyarrow.Table,
            a [dict][], a [list][], or a [pandas.DataFrame][].
        split: The split of the dataset.
        tokenizer: A pretrained tokenizer to use for tokenization.
            Either `tokenizer` or `pretrained` must be specified.
        pretrained: The name of a pretrained tokenizer to use for tokenization.
            Either `tokenizer` or `pretrained` must be specified.
        feature_cols: The names of the feature columns in the dataset.
            Will be inferred automatically if not specified.
        label_cols: The names of the label columns in the dataset.
            Will be inferred automatically if not specified.
        id_cols: The names of the ID columns in the dataset.
            Will be inferred automatically if not specified.
        preprocess: Whether to preprocess the dataset.
            Preprocessing involves pre-tokenizing the sequences using the tokenizer.
            Defaults to `True`.
        auto_rename_cols: Whether to automatically rename columns to standard names.
            Only works when there is exactly one feature column / one label column.
            You can control the naming through `multimolecule.defaults.SEQUENCE_COL_NAME` and
            `multimolecule.defaults.LABEL_COL_NAME`.
            For more refined control, use `column_names_map`.
        column_names_map: A mapping of column names to new column names.
            This is useful for renaming columns to inputs that are expected by a model.
            Defaults to `None`.
        truncation: Whether to truncate sequences that exceed the maximum length of the tokenizer.
            Defaults to `False`.
        max_seq_length: The maximum length of the input sequences.
            Defaults to the `model_max_length` of the tokenizer.
        tasks: A mapping of column names to tasks.
            Will be inferred automatically if not specified.
        discrete_map: A mapping of column names to discrete mappings.
            This is useful for mapping the raw value to nominal value in classification tasks.
            Will be inferred automatically if not specified.
        nan_process: How to handle NaN and inf values in the dataset.
            Can be "ignore", "error", "drop", or "fill". Defaults to "ignore".
        fill_value: The value to fill NaN and inf values with.
            Defaults to 0.
        info: The dataset info.
        indices_table: The indices table.
        fingerprint: The fingerprint of the dataset.
    """

    tokenizer: PreTrainedTokenizerBase
    truncation: bool = False
    max_seq_length: int
    seq_length_offset: int = 0

    _id_cols: List
    _feature_cols: List
    _label_cols: List

    _sequence_cols: List
    _secondary_structure_cols: List

    _tasks: NestedDict[str, Task]
    _discrete_map: Mapping

    preprocess: bool = True
    auto_rename_cols: bool = False
    column_names_map: Mapping[str, str] | None = None
    ignored_cols: List[str] = []

    def __init__(
        self,
        data: Table | DataFrame | dict | list | str,
        split: datasets.NamedSplit,
        tokenizer: PreTrainedTokenizerBase | None = None,
        pretrained: str | None = None,
        feature_cols: List | None = None,
        label_cols: List | None = None,
        id_cols: List | None = None,
        preprocess: bool | None = None,
        auto_rename_cols: bool | None = None,
        column_names_map: Mapping[str, str] | None = None,
        truncation: bool | None = None,
        max_seq_length: int | None = None,
        tasks: Mapping[str, Task] | None = None,
        discrete_map: Mapping[str, int] | None = None,
        nan_process: str = "ignore",
        fill_value: str | int | float = 0,
        info: datasets.DatasetInfo | None = None,
        indices_table: Table | None = None,
        fingerprint: str | None = None,
        ignored_cols: List[str] | None = None,
    ):
        if tasks is not None:
            self._tasks = NestedDict(tasks)
        if discrete_map is not None:
            self._discrete_map = discrete_map
        arrow_table = self.build_table(
            data, split, feature_cols, label_cols, nan_process=nan_process, fill_value=fill_value
        )
        super().__init__(
            arrow_table=arrow_table, split=split, info=info, indices_table=indices_table, fingerprint=fingerprint
        )
        self.identify_special_cols(feature_cols=feature_cols, label_cols=label_cols, id_cols=id_cols)
        self.post(
            tokenizer=tokenizer,
            pretrained=pretrained,
            preprocess=preprocess,
            truncation=truncation,
            max_seq_length=max_seq_length,
            auto_rename_cols=auto_rename_cols,
            column_names_map=column_names_map,
        )
        self.ignored_cols = ignored_cols or self.id_cols

    def build_table(
        self,
        data: Table | DataFrame | dict | str,
        split: datasets.NamedSplit,
        feature_cols: List | None = None,
        label_cols: List | None = None,
        nan_process: str | None = "ignore",
        fill_value: str | int | float = 0,
    ) -> datasets.table.Table:
        if isinstance(data, str):
            try:
                data = datasets.load_dataset(data, split=split).data
            except FileNotFoundError:
                data = dl.load_pandas(data)
                if isinstance(data, DataFrame):
                    data = data.loc[:, ~data.columns.str.contains("^Unnamed")]
                    data = pa.Table.from_pandas(data)
        elif isinstance(data, dict):
            data = pa.Table.from_pydict(data)
        elif isinstance(data, list):
            data = pa.Table.from_pylist(data)
        elif isinstance(data, DataFrame):
            data = pa.Table.from_pandas(data)
        if feature_cols is not None and label_cols is not None:
            data = data.select(feature_cols + label_cols)
        data = self.process_nan(data, nan_process=nan_process, fill_value=fill_value)
        return data

    def post(
        self,
        tokenizer: PreTrainedTokenizerBase | None = None,
        pretrained: str | None = None,
        max_seq_length: int | None = None,
        truncation: bool | None = None,
        preprocess: bool | None = None,
        auto_rename_cols: bool | None = None,
        column_names_map: Mapping[str, str] | None = None,
    ) -> None:
        r"""
        Perform pre-processing steps after initialization.

        It first identifies the special columns (sequence and structure columns) in the dataset.
        Then it sets the feature and label columns based on the input arguments.
        If `auto_rename_cols` is `True`, it will automatically rename the columns to model inputs.
        Finally, it sets the [`transform`][datasets.Dataset.set_transform] function based on the `preprocess` flag.
        """
        if tokenizer is None:
            if pretrained is None:
                raise ValueError("tokenizer and pretrained can not be both None.")
            tokenizer = AutoTokenizer.from_pretrained(pretrained)
        if max_seq_length is None:
            max_seq_length = tokenizer.model_max_length
        else:
            tokenizer.model_max_length = max_seq_length
        self.tokenizer = tokenizer
        self.max_seq_length = max_seq_length
        if truncation is not None:
            self.truncation = truncation
        if self.tokenizer.cls_token is not None:
            self.seq_length_offset += 1
        if self.tokenizer.sep_token is not None and self.tokenizer.sep_token != self.tokenizer.eos_token:
            self.seq_length_offset += 1
        if self.tokenizer.eos_token is not None:
            self.seq_length_offset += 1
        if preprocess is not None:
            self.preprocess = preprocess
        if auto_rename_cols is not None:
            self.auto_rename_cols = auto_rename_cols
        if self.auto_rename_cols:
            if column_names_map is not None:
                raise ValueError("auto_rename_cols and column_names_map are mutually exclusive.")
            column_names_map = {}
            if len(self.feature_cols) == 1:
                column_names_map[self.feature_cols[0]] = defaults.SEQUENCE_COL_NAME
            if len(self.label_cols) == 1:
                column_names_map[self.label_cols[0]] = defaults.LABEL_COL_NAME
        self.column_names_map = column_names_map
        if self.column_names_map:
            self.rename_columns(self.column_names_map)

        if self.preprocess:
            self.update(self.map(self.tokenization))
            if self.secondary_structure_cols:
                self.update(self.map(self.convert_secondary_structure))
            if self.discrete_map:
                self.update(self.map(self.map_discrete))
            fn_kwargs = {
                "columns": [name for name, task in self.tasks.items() if task.level in ["nucleotide", "contact"]],
                "max_seq_length": self.max_seq_length - self.seq_length_offset,
            }
            if self.truncation and 0 < self.max_seq_length < 2**32:
                self.update(self.map(self.truncate, fn_kwargs=fn_kwargs))
        self.set_transform(self.transform)

    def transform(self, batch: Mapping) -> Mapping:
        r"""
        Default [`transform`][datasets.Dataset.set_transform].

        See Also:
            [`collate`][multimolecule.Dataset.collate]
        """
        return {k: self.collate(k, v) for k, v in batch.items() if k not in self.ignored_cols}

    def collate(self, col: str, data: Any) -> Tensor | NestedTensor | None:
        r"""
        Collate the data for a column.

        If the column is a sequence column, it will tokenize the data if `tokenize` is `True`.
        Otherwise, it will return a tensor or nested tensor.
        """
        if col in self.sequence_cols:
            if isinstance(data[0], str):
                data = self.tokenize(data)
            return NestedTensor(data)
        if not self.preprocess:
            if col in self.discrete_map:
                data = map_value(data, self.discrete_map[col])
            if col in self.tasks:
                data = truncate_value(data, self.max_seq_length - self.seq_length_offset, self.tasks[col].level)
        if isinstance(data[0], str):
            return data
        try:
            return torch.tensor(data)
        except ValueError:
            return NestedTensor(data)

    def infer_tasks(self, tasks: Mapping | None = None, sequence_col: str | None = None) -> NestedDict:
        self._tasks = tasks or NestedDict()
        for col in self.label_cols:
            if col not in self.tasks:
                if col in self.secondary_structure_cols:
                    task = Task(TaskType.Binary, level=TaskLevel.Contact, num_labels=1)
                    self._tasks[col] = task  # type: ignore[index]
                    warn(
                        f"Secondary structure columns are assumed to be {task}."
                        " Please explicitly specify the task if this is not the case."
                    )
                else:
                    self._tasks[col] = self.infer_task(col, sequence_col)  # type: ignore[index]
        return self._tasks

    def infer_task(self, label_col: str, sequence_col: str | None = None) -> Task:
        if sequence_col is None:
            if len(self.sequence_cols) != 1:
                raise ValueError("sequence_col must be specified if there are multiple sequence columns.")
            sequence_col = self.sequence_cols[0]
        sequence = self._data.column(sequence_col)
        column = self._data.column(label_col)
        return infer_task(
            sequence,
            column,
            truncation=self.truncation,
            max_seq_length=self.max_seq_length,
            seq_length_offset=self.seq_length_offset,
        )

    def infer_discrete_map(self, discrete_map: Mapping | None = None):
        self._discrete_map = discrete_map or NestedDict()
        ignored_cols = set(self.discrete_map.keys()) | set(self.sequence_cols) | set(self.secondary_structure_cols)
        data_cols = [i for i in self.data_cols if i not in ignored_cols]
        for col in data_cols:
            discrete_map = infer_discrete_map(self._data.column(col))
            if discrete_map:
                self._discrete_map[col] = discrete_map  # type: ignore[index]
        return self._discrete_map

    def __getitems__(self, keys: int | slice | Iterable[int]) -> Any:
        return self.__getitem__(keys)

    def identify_special_cols(
        self, feature_cols: List | None = None, label_cols: List | None = None, id_cols: List | None = None
    ) -> Sequence:
        all_cols = self.data.column_names
        self._id_cols = id_cols or [i for i in all_cols if i in defaults.ID_COL_NAMES]

        string_cols = [k for k, v in self.features.items() if k not in self.id_cols and v.dtype == "string"]
        self._sequence_cols = [i for i in string_cols if i in defaults.SEQUENCE_COL_NAMES]
        self._secondary_structure_cols = [i for i in string_cols if i in defaults.SECONDARY_STRUCTURE_COL_NAMES]

        data_cols = [i for i in all_cols if i not in self.id_cols]
        if label_cols is None:
            if feature_cols is None:
                feature_cols = [i for i in data_cols if i in defaults.SEQUENCE_COL_NAMES]
            label_cols = [i for i in data_cols if i not in feature_cols]
        self._label_cols = label_cols
        if feature_cols is None:
            feature_cols = [i for i in data_cols if i not in self.label_cols]
        self._feature_cols = feature_cols
        missing_feature_cols = set(self.feature_cols).difference(data_cols)
        if missing_feature_cols:
            raise ValueError(f"{missing_feature_cols} are specified in feature_cols, but not found in dataset.")
        missing_label_cols = set(self.label_cols).difference(data_cols)
        if missing_label_cols:
            raise ValueError(f"{missing_label_cols} are specified in label_cols, but not found in dataset.")
        return string_cols

    def tokenize(self, string: str) -> Tensor:
        return self.tokenizer(string, return_attention_mask=False, truncation=self.truncation)["input_ids"]

    def tokenization(self, data: Mapping[str, str]) -> Mapping[str, Tensor]:
        return {col: self.tokenize(data[col]) for col in self.sequence_cols}

    def convert_secondary_structure(self, data: Mapping) -> Mapping:
        return {col: dot_bracket_to_contact_map(data[col]) for col in self.secondary_structure_cols}

    def map_discrete(self, data: Mapping) -> Mapping:
        return {name: map_value(data[name], mapping) for name, mapping in self.discrete_map.items()}

    def truncate(self, data: Mapping, columns: List[str], max_seq_length: int) -> Mapping:
        return {name: truncate_value(data[name], max_seq_length, self.tasks[name].level) for name in columns}

    def update(self, dataset: datasets.Dataset):
        r"""
        Perform an in-place update of the dataset.

        This method is used to update the dataset after changes have been made to the underlying data.
        It updates the format columns, data, info, and fingerprint of the dataset.
        """
        # pylint: disable=W0212
        # Why datasets won't support in-place changes?
        # It's just impossible to extend.
        self._format_columns = dataset._format_columns
        self._data = dataset._data
        self._info = dataset._info
        self._fingerprint = dataset._fingerprint

    def rename_columns(self, column_mapping: Mapping[str, str], new_fingerprint: str | None = None) -> datasets.Dataset:
        self.update(super().rename_columns(column_mapping, new_fingerprint=new_fingerprint))
        self._id_cols = [column_mapping.get(i, i) for i in self.id_cols]
        self._feature_cols = [column_mapping.get(i, i) for i in self.feature_cols]
        self._label_cols = [column_mapping.get(i, i) for i in self.label_cols]
        self._sequence_cols = [column_mapping.get(i, i) for i in self.sequence_cols]
        self._secondary_structure_cols = [column_mapping.get(i, i) for i in self.secondary_structure_cols]
        self._tasks = {column_mapping.get(k, k): v for k, v in self.tasks.items()}
        return self

    def rename_column(
        self, original_column_name: str, new_column_name: str, new_fingerprint: str | None = None
    ) -> datasets.Dataset:
        self.update(super().rename_column(original_column_name, new_column_name, new_fingerprint))
        self._id_cols = [new_column_name if i == original_column_name else i for i in self.id_cols]
        self._feature_cols = [new_column_name if i == original_column_name else i for i in self.feature_cols]
        self._label_cols = [new_column_name if i == original_column_name else i for i in self.label_cols]
        self._sequence_cols = [new_column_name if i == original_column_name else i for i in self.sequence_cols]
        self._secondary_structure_cols = [
            new_column_name if i == original_column_name else i for i in self.secondary_structure_cols
        ]
        self._tasks = {new_column_name if k == original_column_name else k: v for k, v in self.tasks.items()}
        return self

    def process_nan(self, data: Table, nan_process: str | None, fill_value: str | int | float = 0) -> Table:
        if nan_process == "ignore":
            return data
        data = data.to_pandas()
        data = data.replace([float("inf"), -float("inf")], float("nan"))
        if data.isnull().values.any():
            if nan_process is None or nan_process == "error":
                raise ValueError("NaN / inf values have been found in the dataset.")
            warn(
                "NaN / inf values have been found in the dataset.\n"
                "While we can handle them, the data type of the corresponding column may be set to float, "
                "which can and very likely will disrupt the auto task recognition.\n"
                "It is recommended to address these values before loading the dataset."
            )
            if nan_process == "drop":
                data = data.dropna()
            elif nan_process == "fill":
                data = data.fillna(fill_value)
            else:
                raise ValueError(f"Invalid nan_process: {nan_process}")
        return pa.Table.from_pandas(data)

    @property
    def id_cols(self) -> List:
        return self._id_cols

    @property
    def data_cols(self) -> List:
        return self.feature_cols + self.label_cols

    @property
    def feature_cols(self) -> List:
        return self._feature_cols

    @property
    def label_cols(self) -> List:
        return self._label_cols

    @property
    def sequence_cols(self) -> List:
        return self._sequence_cols

    @property
    def secondary_structure_cols(self) -> List:
        return self._secondary_structure_cols

    @property
    def tasks(self) -> NestedDict:
        if not hasattr(self, "_tasks"):
            return self.infer_tasks()
        return self._tasks

    @property
    def discrete_map(self) -> Mapping:
        if not hasattr(self, "_discrete_map"):
            return self.infer_discrete_map()
        return self._discrete_map

post

Python
post(tokenizer: PreTrainedTokenizerBase | None = None, pretrained: str | None = None, max_seq_length: int | None = None, truncation: bool | None = None, preprocess: bool | None = None, auto_rename_cols: bool | None = None, column_names_map: Mapping[str, str] | None = None) -> None

Perform pre-processing steps after initialization.

It first identifies the special columns (sequence and structure columns) in the dataset. Then it sets the feature and label columns based on the input arguments. If auto_rename_cols is True, it will automatically rename the columns to model inputs. Finally, it sets the transform function based on the preprocess flag.

Source code in multimolecule/data/dataset.py
Python
def post(
    self,
    tokenizer: PreTrainedTokenizerBase | None = None,
    pretrained: str | None = None,
    max_seq_length: int | None = None,
    truncation: bool | None = None,
    preprocess: bool | None = None,
    auto_rename_cols: bool | None = None,
    column_names_map: Mapping[str, str] | None = None,
) -> None:
    r"""
    Perform pre-processing steps after initialization.

    It first identifies the special columns (sequence and structure columns) in the dataset.
    Then it sets the feature and label columns based on the input arguments.
    If `auto_rename_cols` is `True`, it will automatically rename the columns to model inputs.
    Finally, it sets the [`transform`][datasets.Dataset.set_transform] function based on the `preprocess` flag.
    """
    if tokenizer is None:
        if pretrained is None:
            raise ValueError("tokenizer and pretrained can not be both None.")
        tokenizer = AutoTokenizer.from_pretrained(pretrained)
    if max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
    else:
        tokenizer.model_max_length = max_seq_length
    self.tokenizer = tokenizer
    self.max_seq_length = max_seq_length
    if truncation is not None:
        self.truncation = truncation
    if self.tokenizer.cls_token is not None:
        self.seq_length_offset += 1
    if self.tokenizer.sep_token is not None and self.tokenizer.sep_token != self.tokenizer.eos_token:
        self.seq_length_offset += 1
    if self.tokenizer.eos_token is not None:
        self.seq_length_offset += 1
    if preprocess is not None:
        self.preprocess = preprocess
    if auto_rename_cols is not None:
        self.auto_rename_cols = auto_rename_cols
    if self.auto_rename_cols:
        if column_names_map is not None:
            raise ValueError("auto_rename_cols and column_names_map are mutually exclusive.")
        column_names_map = {}
        if len(self.feature_cols) == 1:
            column_names_map[self.feature_cols[0]] = defaults.SEQUENCE_COL_NAME
        if len(self.label_cols) == 1:
            column_names_map[self.label_cols[0]] = defaults.LABEL_COL_NAME
    self.column_names_map = column_names_map
    if self.column_names_map:
        self.rename_columns(self.column_names_map)

    if self.preprocess:
        self.update(self.map(self.tokenization))
        if self.secondary_structure_cols:
            self.update(self.map(self.convert_secondary_structure))
        if self.discrete_map:
            self.update(self.map(self.map_discrete))
        fn_kwargs = {
            "columns": [name for name, task in self.tasks.items() if task.level in ["nucleotide", "contact"]],
            "max_seq_length": self.max_seq_length - self.seq_length_offset,
        }
        if self.truncation and 0 < self.max_seq_length < 2**32:
            self.update(self.map(self.truncate, fn_kwargs=fn_kwargs))
    self.set_transform(self.transform)

transform

Python
transform(batch: Mapping) -> Mapping

Default transform.

See Also

collate

Source code in multimolecule/data/dataset.py
Python
def transform(self, batch: Mapping) -> Mapping:
    r"""
    Default [`transform`][datasets.Dataset.set_transform].

    See Also:
        [`collate`][multimolecule.Dataset.collate]
    """
    return {k: self.collate(k, v) for k, v in batch.items() if k not in self.ignored_cols}

collate

Python
collate(col: str, data: Any) -> Tensor | NestedTensor | None

Collate the data for a column.

If the column is a sequence column, it will tokenize the data if tokenize is True. Otherwise, it will return a tensor or nested tensor.

Source code in multimolecule/data/dataset.py
Python
def collate(self, col: str, data: Any) -> Tensor | NestedTensor | None:
    r"""
    Collate the data for a column.

    If the column is a sequence column, it will tokenize the data if `tokenize` is `True`.
    Otherwise, it will return a tensor or nested tensor.
    """
    if col in self.sequence_cols:
        if isinstance(data[0], str):
            data = self.tokenize(data)
        return NestedTensor(data)
    if not self.preprocess:
        if col in self.discrete_map:
            data = map_value(data, self.discrete_map[col])
        if col in self.tasks:
            data = truncate_value(data, self.max_seq_length - self.seq_length_offset, self.tasks[col].level)
    if isinstance(data[0], str):
        return data
    try:
        return torch.tensor(data)
    except ValueError:
        return NestedTensor(data)

update

Python
update(dataset: Dataset)

Perform an in-place update of the dataset.

This method is used to update the dataset after changes have been made to the underlying data. It updates the format columns, data, info, and fingerprint of the dataset.

Source code in multimolecule/data/dataset.py
Python
def update(self, dataset: datasets.Dataset):
    r"""
    Perform an in-place update of the dataset.

    This method is used to update the dataset after changes have been made to the underlying data.
    It updates the format columns, data, info, and fingerprint of the dataset.
    """
    # pylint: disable=W0212
    # Why datasets won't support in-place changes?
    # It's just impossible to extend.
    self._format_columns = dataset._format_columns
    self._data = dataset._data
    self._info = dataset._info
    self._fingerprint = dataset._fingerprint