跳转至

RNA-FM

Pre-trained model on non-coding RNA (ncRNA) using a masked language modeling (MLM) objective.

Disclaimer

This is an UNOFFICIAL implementation of the Interpretable RNA Foundation Model from Unannotated Data for Highly Accurate RNA Structure and Function Predictions by Jiayang Chen, Zhihang Hue, Siqi Sun, et al.

The OFFICIAL repository of RNA-FM is at ml4bio/RNA-FM.

Tip

The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.

The team releasing RNA-FM did not write this model card for this model so this model card has been written by the MultiMolecule team.

Model Details

RNA-FM is a bert-style model pre-trained on a large corpus of non-coding RNA sequences in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the Training Details section for more information on the training process.

Variants

Model Specification

Variants Num Layers Hidden Size Num Heads Intermediate Size Num Parameters (M) FLOPs (G) MACs (G) Max Num Tokens
RNA-FM 12 640 20 5120 99.52 25.68 12.83 1024
mRNA-FM 1280 239.25 61.43 30.7

Usage

The model file depends on the multimolecule library. You can install it using pip:

Bash
pip install multimolecule

Direct Use

Masked Language Modeling

You can use this model directly with a pipeline for masked language modeling:

Python
1
2
3
4
5
import multimolecule  # you must import multimolecule to register models
from transformers import pipeline

predictor = pipeline("fill-mask", model="multimolecule/rnafm")
output = predictor("gguc<mask>cucugguuagaccagaucugagccu")

Downstream Use

Extract Features

Here is how to use this model to get the features of a given sequence in PyTorch:

Python
from multimolecule import RnaTokenizer, RnaFmModel


tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnafm")
model = RnaFmModel.from_pretrained("multimolecule/rnafm")

text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")

output = model(**input)

Sequence Classification / Regression

Note

This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.

Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:

Python
import torch
from multimolecule import RnaTokenizer, RnaFmForSequencePrediction


tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnafm")
model = RnaFmForSequencePrediction.from_pretrained("multimolecule/rnafm")

text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.tensor([1])

output = model(**input, labels=label)

Token Classification / Regression

Note

This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for token classification or regression.

Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:

Python
import torch
from multimolecule import RnaTokenizer, RnaFmForTokenPrediction


tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnafm")
model = RnaFmForTokenPrediction.from_pretrained("multimolecule/rnafm")

text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), ))

output = model(**input, labels=label)

Contact Classification / Regression

Note

This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.

Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:

Python
import torch
from multimolecule import RnaTokenizer, RnaFmForContactPrediction


tokenizer = RnaTokenizer.from_pretrained("multimolecule/rnafm")
model = RnaFmForContactPrediction.from_pretrained("multimolecule/rnafm")

text = "UAGCUUAUCAGACUGAUGUUG"
input = tokenizer(text, return_tensors="pt")
label = torch.randint(2, (len(text), len(text)))

output = model(**input, labels=label)

Training Details

RNA-FM used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.

Training Data

The RNA-FM model was pre-trained on RNAcentral. RNAcentral is a free, public resource that offers integrated access to a comprehensive and up-to-date set of non-coding RNA sequences provided by a collaborating group of Expert Databases representing a broad range of organisms and RNA types.

RNA-FM applied CD-HIT (CD-HIT-EST) with a cut-off at 100% sequence identity to remove redundancy from the RNAcentral. The final dataset contains 23.7 million non-redundant RNA sequences.

RNA-FM preprocessed all tokens by replacing “U”s with “T”s.

Note that during model conversions, “T” is replaced with “U”. RnaTokenizer will convert “T”s to “U”s for you, you may disable this behaviour by passing replace_T_with_U=False.

Training Procedure

Preprocessing

RNA-FM used masked language modeling (MLM) as the pre-training objective. The masking procedure is similar to the one used in BERT:

  • 15% of the tokens are masked.
  • In 80% of the cases, the masked tokens are replaced by <mask>.
  • In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
  • In the 10% remaining cases, the masked tokens are left as is.

Pre-training

The model was trained on 8 NVIDIA A100 GPUs with 80GiB memories.

  • Learning rate: 1e-4
  • Learning rate scheduler: Inverse square root
  • Learning rate warm-up: 10,000 steps
  • Weight decay: 0.01

Citation

BibTeX
1
2
3
4
5
6
@article{chen2022interpretable,
  title={Interpretable rna foundation model from unannotated data for highly accurate rna structure and function predictions},
  author={Chen, Jiayang and Hu, Zhihang and Sun, Siqi and Tan, Qingxiong and Wang, Yixuan and Yu, Qinze and Zong, Licheng and Hong, Liang and Xiao, Jin and King, Irwin and others},
  journal={arXiv preprint arXiv:2204.00300},
  year={2022}
}

Note

The artifacts distributed in this repository are part of the MultiMolecule project. If you use MultiMolecule in your research, you must cite the MultiMolecule project as follows:

BibTeX
@software{chen_2024_12638419,
  author    = {Chen, Zhiyuan and Zhu, Sophia Y.},
  title     = {MultiMolecule},
  doi       = {10.5281/zenodo.12638419},
  publisher = {Zenodo},
  url       = {https://doi.org/10.5281/zenodo.12638419},
  year      = 2024,
  month     = may,
  day       = 4
}

Contact

Please use GitHub issues of MultiMolecule for any questions or comments on the model card.

Please contact the authors of the RNA-FM paper for questions or comments on the paper/model.

License

This model is licensed under the GNU Affero General Public License.

For additional terms and clarifications, please refer to our License FAQ.

Text Only
SPDX-License-Identifier: AGPL-3.0-or-later

multimolecule.models.rnafm

RnaTokenizer

Bases: Tokenizer

Tokenizer for RNA sequences.

Parameters:

Name Type Description Default

alphabet

Alphabet | str | List[str] | None

alphabet to use for tokenization.

  • If is None, the standard RNA alphabet will be used.
  • If is a string, it should correspond to the name of a predefined alphabet. The options include
    • standard
    • extended
    • streamline
    • nucleobase
  • If is an alphabet or a list of characters, that specific alphabet will be used.
None

nmers

int

Size of kmer to tokenize.

1

codon

bool

Whether to tokenize into codons.

False

replace_T_with_U

bool

Whether to replace T with U.

True

do_upper_case

bool

Whether to convert input to uppercase.

True

Examples:

Python Console Session
>>> from multimolecule import RnaTokenizer
>>> tokenizer = RnaTokenizer()
>>> tokenizer('<pad><cls><eos><unk><mask><null>ACGUNRYSWKMBDHV.X*-I')["input_ids"]
[1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2]
>>> tokenizer('acgu')["input_ids"]
[1, 6, 7, 8, 9, 2]
>>> tokenizer('acgt')["input_ids"]
[1, 6, 7, 8, 9, 2]
>>> tokenizer = RnaTokenizer(replace_T_with_U=False)
>>> tokenizer('acgt')["input_ids"]
[1, 6, 7, 8, 3, 2]
>>> tokenizer = RnaTokenizer(nmers=3)
>>> tokenizer('uagcuuauc')["input_ids"]
[1, 83, 17, 64, 49, 96, 84, 22, 2]
>>> tokenizer = RnaTokenizer(codon=True)
>>> tokenizer('uagcuuauc')["input_ids"]
[1, 83, 49, 22, 2]
>>> tokenizer('uagcuuauca')["input_ids"]
Traceback (most recent call last):
ValueError: length of input sequence must be a multiple of 3 for codon tokenization, but got 10
Source code in multimolecule/tokenisers/rna/tokenization_rna.py
Python
class RnaTokenizer(Tokenizer):
    """
    Tokenizer for RNA sequences.

    Args:
        alphabet: alphabet to use for tokenization.

            - If is `None`, the standard RNA alphabet will be used.
            - If is a `string`, it should correspond to the name of a predefined alphabet. The options include
                + `standard`
                + `extended`
                + `streamline`
                + `nucleobase`
            - If is an alphabet or a list of characters, that specific alphabet will be used.
        nmers: Size of kmer to tokenize.
        codon: Whether to tokenize into codons.
        replace_T_with_U: Whether to replace T with U.
        do_upper_case: Whether to convert input to uppercase.

    Examples:
        >>> from multimolecule import RnaTokenizer
        >>> tokenizer = RnaTokenizer()
        >>> tokenizer('<pad><cls><eos><unk><mask><null>ACGUNRYSWKMBDHV.X*-I')["input_ids"]
        [1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2]
        >>> tokenizer('acgu')["input_ids"]
        [1, 6, 7, 8, 9, 2]
        >>> tokenizer('acgt')["input_ids"]
        [1, 6, 7, 8, 9, 2]
        >>> tokenizer = RnaTokenizer(replace_T_with_U=False)
        >>> tokenizer('acgt')["input_ids"]
        [1, 6, 7, 8, 3, 2]
        >>> tokenizer = RnaTokenizer(nmers=3)
        >>> tokenizer('uagcuuauc')["input_ids"]
        [1, 83, 17, 64, 49, 96, 84, 22, 2]
        >>> tokenizer = RnaTokenizer(codon=True)
        >>> tokenizer('uagcuuauc')["input_ids"]
        [1, 83, 49, 22, 2]
        >>> tokenizer('uagcuuauca')["input_ids"]
        Traceback (most recent call last):
        ValueError: length of input sequence must be a multiple of 3 for codon tokenization, but got 10
    """

    model_input_names = ["input_ids", "attention_mask"]

    def __init__(
        self,
        alphabet: Alphabet | str | List[str] | None = None,
        nmers: int = 1,
        codon: bool = False,
        replace_T_with_U: bool = True,
        do_upper_case: bool = True,
        additional_special_tokens: List | Tuple | None = None,
        **kwargs,
    ):
        if codon and (nmers > 1 and nmers != 3):
            raise ValueError("Codon and nmers cannot be used together.")
        if codon:
            nmers = 3  # set to 3 to get correct vocab
        if not isinstance(alphabet, Alphabet):
            alphabet = get_alphabet(alphabet, nmers=nmers)
        super().__init__(
            alphabet=alphabet,
            nmers=nmers,
            codon=codon,
            replace_T_with_U=replace_T_with_U,
            do_upper_case=do_upper_case,
            additional_special_tokens=additional_special_tokens,
            **kwargs,
        )
        self.replace_T_with_U = replace_T_with_U
        self.nmers = nmers
        self.codon = codon

    def _tokenize(self, text: str, **kwargs):
        if self.do_upper_case:
            text = text.upper()
        if self.replace_T_with_U:
            text = text.replace("T", "U")
        if self.codon:
            if len(text) % 3 != 0:
                raise ValueError(
                    f"length of input sequence must be a multiple of 3 for codon tokenization, but got {len(text)}"
                )
            return [text[i : i + 3] for i in range(0, len(text), 3)]
        if self.nmers > 1:
            return [text[i : i + self.nmers] for i in range(len(text) - self.nmers + 1)]  # noqa: E203
        return list(text)

RnaFmConfig

Bases: PreTrainedConfig

This is the configuration class to store the configuration of a RnaFmModel. It is used to instantiate a RNA-FM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RNA-FM ml4bio/RNA-FM architecture.

Configuration objects inherit from PreTrainedConfig and can be used to control the model outputs. Read the documentation from PreTrainedConfig for more information.

Parameters:

Name Type Description Default

vocab_size

int | None

Vocabulary size of the RNA-FM model. Defines the number of different tokens that can be represented by the input_ids passed when calling [RnaFmModel]. Defaults to 26 if codon=False else 131.

None

codon

bool

Whether to use codon tokenization.

False

hidden_size

int

Dimensionality of the encoder layers and the pooler layer.

640

num_hidden_layers

int

Number of hidden layers in the Transformer encoder.

12

num_attention_heads

int

Number of attention heads for each attention layer in the Transformer encoder.

20

intermediate_size

int

Dimensionality of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

5120

hidden_act

str

The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "silu" and "gelu_new" are supported.

'gelu'

hidden_dropout

float

The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

0.1

attention_dropout

float

The dropout ratio for the attention probabilities.

0.1

max_position_embeddings

int

The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

1026

initializer_range

float

The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

0.02

layer_norm_eps

float

The epsilon used by the layer normalization layers.

1e-12

position_embedding_type

str

Type of position embedding. Choose one of "absolute", "relative_key", "relative_key_query", "rotary". For positional embeddings use "absolute". For more information on "relative_key", please refer to Self-Attention with Relative Position Representations (Shaw et al.). For more information on "relative_key_query", please refer to Method 4 in Improve Transformer Models with Better Relative Position Embeddings (Huang et al.).

'absolute'

is_decoder

bool

Whether the model is used as a decoder or not. If False, the model is used as an encoder.

False

use_cache

bool

Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if config.is_decoder=True.

True

embed_norm

bool

Whether to apply layer normalization after embeddings but before the main stem of the network.

True

token_dropout

bool

When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.

False

head

HeadConfig | None

The configuration of the prediction head.

None

lm_head

MaskedLMHeadConfig | None

The configuration of the masked language model head.

None

add_cross_attention

bool

Whether to add cross-attention layers when the model is used as a decoder.

False

Examples:

Python Console Session
1
2
3
4
5
6
7
>>> from multimolecule import RnaFmConfig, RnaFmModel
>>> # Initializing a RNA-FM multimolecule/rnafm style configuration
>>> configuration = RnaFmConfig()
>>> # Initializing a model (with random weights) from the multimolecule/rnafm style configuration
>>> model = RnaFmModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
Source code in multimolecule/models/rnafm/configuration_rnafm.py
Python
class RnaFmConfig(PreTrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`RnaFmModel`][multimolecule.models.RnaFmModel].
    It is used to instantiate a RNA-FM model according to the specified arguments, defining the model architecture.
    Instantiating a configuration with the defaults will yield a similar configuration to that of the RNA-FM
    [ml4bio/RNA-FM](https://github.com/ml4bio/RNA-FM) architecture.

    Configuration objects inherit from [`PreTrainedConfig`][multimolecule.models.PreTrainedConfig] and can be used to
    control the model outputs. Read the documentation from [`PreTrainedConfig`][multimolecule.models.PreTrainedConfig]
    for more information.

    Args:
        vocab_size:
            Vocabulary size of the RNA-FM model. Defines the number of different tokens that can be represented by the
            `input_ids` passed when calling [`RnaFmModel`].
            Defaults to 26 if `codon=False` else 131.
        codon:
            Whether to use codon tokenization.
        hidden_size:
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers:
            Number of hidden layers in the Transformer encoder.
        num_attention_heads:
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size:
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
        hidden_act:
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        hidden_dropout:
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout:
            The dropout ratio for the attention probabilities.
        max_position_embeddings:
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range:
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps:
            The epsilon used by the layer normalization layers.
        position_embedding_type:
            Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`,
            `"rotary"`.
            For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
            [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
            For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
            with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
        is_decoder:
            Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
        use_cache:
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        embed_norm:
            Whether to apply layer normalization after embeddings but before the main stem of the network.
        token_dropout:
            When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
        head:
            The configuration of the prediction head.
        lm_head:
            The configuration of the masked language model head.
        add_cross_attention:
            Whether to add cross-attention layers when the model is used as a decoder.

    Examples:
        >>> from multimolecule import RnaFmConfig, RnaFmModel
        >>> # Initializing a RNA-FM multimolecule/rnafm style configuration
        >>> configuration = RnaFmConfig()
        >>> # Initializing a model (with random weights) from the multimolecule/rnafm style configuration
        >>> model = RnaFmModel(configuration)
        >>> # Accessing the model configuration
        >>> configuration = model.config
    """

    model_type = "rnafm"

    def __init__(
        self,
        vocab_size: int | None = None,
        codon: bool = False,
        hidden_size: int = 640,
        num_hidden_layers: int = 12,
        num_attention_heads: int = 20,
        intermediate_size: int = 5120,
        hidden_act: str = "gelu",
        hidden_dropout: float = 0.1,
        attention_dropout: float = 0.1,
        max_position_embeddings: int = 1026,
        initializer_range: float = 0.02,
        layer_norm_eps: float = 1e-12,
        position_embedding_type: str = "absolute",
        is_decoder: bool = False,
        use_cache: bool = True,
        embed_norm: bool = True,
        token_dropout: bool = False,
        head: HeadConfig | None = None,
        lm_head: MaskedLMHeadConfig | None = None,
        add_cross_attention: bool = False,
        **kwargs,
    ):
        super().__init__(**kwargs)
        if vocab_size is None:
            vocab_size = 131 if codon else 26
        self.vocab_size = vocab_size
        self.codon = codon
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout = hidden_dropout
        self.attention_dropout = attention_dropout
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.position_embedding_type = position_embedding_type
        self.is_decoder = is_decoder
        self.use_cache = use_cache
        self.embed_norm = embed_norm
        self.token_dropout = token_dropout
        self.head = HeadConfig(**head) if head is not None else None
        self.lm_head = MaskedLMHeadConfig(**lm_head) if lm_head is not None else None
        self.add_cross_attention = add_cross_attention

RnaFmForContactPrediction

Bases: RnaFmPreTrainedModel

Examples:

Python Console Session
>>> import torch
>>> from multimolecule import RnaFmConfig, RnaFmForContactPrediction, RnaTokenizer
>>> config = RnaFmConfig()
>>> model = RnaFmForContactPrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=torch.randint(2, (1, 5, 5)))
>>> output["logits"].shape
torch.Size([1, 5, 5, 1])
>>> output["loss"]
tensor(..., grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)
Source code in multimolecule/models/rnafm/modeling_rnafm.py
Python
class RnaFmForContactPrediction(RnaFmPreTrainedModel):
    """
    Examples:
        >>> import torch
        >>> from multimolecule import RnaFmConfig, RnaFmForContactPrediction, RnaTokenizer
        >>> config = RnaFmConfig()
        >>> model = RnaFmForContactPrediction(config)
        >>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
        >>> input = tokenizer("ACGUN", return_tensors="pt")
        >>> output = model(**input, labels=torch.randint(2, (1, 5, 5)))
        >>> output["logits"].shape
        torch.Size([1, 5, 5, 1])
        >>> output["loss"]  # doctest:+ELLIPSIS
        tensor(..., grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)
    """

    def __init__(self, config: RnaFmConfig):
        super().__init__(config)
        self.model = RnaFmModel(config, add_pooling_layer=False)
        self.contact_head = ContactPredictionHead(config)
        self.head_config = self.contact_head.config
        self.require_attentions = self.contact_head.require_attentions

        # Initialize weights and apply final processing
        self.post_init()

    @can_return_tuple
    def forward(
        self,
        input_ids: Tensor | NestedTensor | None = None,
        attention_mask: Tensor | None = None,
        position_ids: Tensor | None = None,
        inputs_embeds: Tensor | NestedTensor | None = None,
        labels: Tensor | None = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Tuple[Tensor, ...] | ContactPredictorOutput:
        if self.require_attentions:
            output_attentions = kwargs.get("output_attentions", self.config.output_attentions)
            if output_attentions is False:
                warn("output_attentions must be True since prediction head requires attentions.")
            kwargs["output_attentions"] = True
        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            return_dict=True,
            **kwargs,
        )
        output = self.contact_head(outputs, attention_mask, input_ids, labels)
        logits, loss = output.logits, output.loss

        return ContactPredictorOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

RnaFmForMaskedLM

Bases: RnaFmPreTrainedModel

Examples:

Python Console Session
>>> import torch
>>> from multimolecule import RnaFmConfig, RnaFmForMaskedLM, RnaTokenizer
>>> config = RnaFmConfig()
>>> model = RnaFmForMaskedLM(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=input["input_ids"])
>>> output["logits"].shape
torch.Size([1, 7, 26])
>>> output["loss"]
tensor(..., grad_fn=<NllLossBackward0>)
Source code in multimolecule/models/rnafm/modeling_rnafm.py
Python
class RnaFmForMaskedLM(RnaFmPreTrainedModel):
    """
    Examples:
        >>> import torch
        >>> from multimolecule import RnaFmConfig, RnaFmForMaskedLM, RnaTokenizer
        >>> config = RnaFmConfig()
        >>> model = RnaFmForMaskedLM(config)
        >>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
        >>> input = tokenizer("ACGUN", return_tensors="pt")
        >>> output = model(**input, labels=input["input_ids"])
        >>> output["logits"].shape
        torch.Size([1, 7, 26])
        >>> output["loss"]  # doctest:+ELLIPSIS
        tensor(..., grad_fn=<NllLossBackward0>)
    """

    _tied_weights_keys = {
        "lm_head.decoder.weight": "model.embeddings.word_embeddings.weight",
        "lm_head.decoder.bias": "lm_head.bias",
    }

    def __init__(self, config: RnaFmConfig):
        super().__init__(config)
        if config.is_decoder:
            warn(
                "If you want to use `RnaFmForMaskedLM` make sure `config.is_decoder=False` for "
                "bi-directional self-attention."
            )
        self.model = RnaFmModel(config, add_pooling_layer=False)
        self.lm_head = MaskedLMHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    def set_output_embeddings(self, embeddings):
        self.lm_head.decoder = embeddings
        if hasattr(self.lm_head, "bias"):
            self.lm_head.bias = embeddings.bias

    @can_return_tuple
    def forward(
        self,
        input_ids: Tensor | NestedTensor | None = None,
        attention_mask: Tensor | None = None,
        position_ids: Tensor | None = None,
        inputs_embeds: Tensor | NestedTensor | None = None,
        encoder_hidden_states: Tensor | None = None,
        encoder_attention_mask: Tensor | None = None,
        labels: Tensor | None = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Tuple[Tensor, ...] | MaskedLMOutput:
        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            return_dict=True,
            **kwargs,
        )
        output = self.lm_head(outputs, labels)
        logits, loss = output.logits, output.loss

        return MaskedLMOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

RnaFmForPreTraining

Bases: RnaFmForMaskedLM

Examples:

Python Console Session
>>> import torch
>>> from multimolecule import RnaFmConfig, RnaFmForPreTraining, RnaTokenizer
>>> config = RnaFmConfig()
>>> model = RnaFmForPreTraining(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels_lm=input["input_ids"])
>>> output["loss"]
tensor(..., grad_fn=<MeanBackward0>)
>>> output["logits_lm"].shape
torch.Size([1, 7, 26])
>>> output["logits_ss"].shape
torch.Size([1, 5, 5, 1])
Source code in multimolecule/models/rnafm/modeling_rnafm.py
Python
class RnaFmForPreTraining(RnaFmForMaskedLM):
    """
    Examples:
        >>> import torch
        >>> from multimolecule import RnaFmConfig, RnaFmForPreTraining, RnaTokenizer
        >>> config = RnaFmConfig()
        >>> model = RnaFmForPreTraining(config)
        >>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
        >>> input = tokenizer("ACGUN", return_tensors="pt")
        >>> output = model(**input, labels_lm=input["input_ids"])
        >>> output["loss"]  # doctest:+ELLIPSIS
        tensor(..., grad_fn=<MeanBackward0>)
        >>> output["logits_lm"].shape
        torch.Size([1, 7, 26])
        >>> output["logits_ss"].shape
        torch.Size([1, 5, 5, 1])
    """

    def __init__(self, config: RnaFmConfig):
        super().__init__(config)
        self.ss_head = ContactAttentionHead(config)
        self.require_attentions = self.ss_head.require_attentions

        # Initialize weights and apply final processing
        self.post_init()

    @can_return_tuple
    def forward(  # type: ignore[override]
        self,
        input_ids: Tensor | NestedTensor | None = None,
        attention_mask: Tensor | None = None,
        position_ids: Tensor | None = None,
        inputs_embeds: Tensor | NestedTensor | None = None,
        encoder_hidden_states: Tensor | None = None,
        encoder_attention_mask: Tensor | None = None,
        labels_lm: Tensor | None = None,
        labels_ss: Tensor | None = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Tuple[Tensor, ...] | RnaFmForPreTrainingOutput:
        if self.require_attentions:
            output_attentions = kwargs.get("output_attentions", self.config.output_attentions)
            if output_attentions is False:
                warn("output_attentions must be True since prediction head requires attentions.")
            kwargs["output_attentions"] = True
        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            return_dict=True,
            **kwargs,
        )

        output_lm = self.lm_head(outputs, labels=labels_lm)
        logits_lm, loss_lm = output_lm.logits, output_lm.loss

        output_ss = self.ss_head(outputs, attention_mask, input_ids, labels=labels_ss)
        logits_ss, loss_ss = output_ss.logits, output_ss.loss

        losses = tuple(l for l in (loss_lm, loss_ss) if l is not None)  # noqa: E741
        loss = torch.mean(torch.stack(losses)) if losses else None

        return RnaFmForPreTrainingOutput(
            loss=loss,
            logits_lm=logits_lm,
            loss_lm=loss_lm,
            logits_ss=logits_ss,
            loss_ss=loss_ss,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

RnaFmForSecondaryStructurePrediction

Bases: RnaFmForPreTraining

Examples:

Python Console Session
1
2
3
4
5
6
7
8
9
>>> import torch
>>> from multimolecule import RnaFmConfig, RnaFmForSecondaryStructurePrediction, RnaTokenizer
>>> config = RnaFmConfig()
>>> model = RnaFmForSecondaryStructurePrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input)
>>> output["logits"].shape
torch.Size([1, 5, 5, 1])
Source code in multimolecule/models/rnafm/modeling_rnafm.py
Python
class RnaFmForSecondaryStructurePrediction(RnaFmForPreTraining):
    """
    Examples:
        >>> import torch
        >>> from multimolecule import RnaFmConfig, RnaFmForSecondaryStructurePrediction, RnaTokenizer
        >>> config = RnaFmConfig()
        >>> model = RnaFmForSecondaryStructurePrediction(config)
        >>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
        >>> input = tokenizer("ACGUN", return_tensors="pt")
        >>> output = model(**input)
        >>> output["logits"].shape
        torch.Size([1, 5, 5, 1])
    """

    def __init__(self, config: RnaFmConfig):
        super().__init__(config)
        self.model = RnaFmModel(config, add_pooling_layer=False)
        self.ss_head = RnaFmSecondaryStructurePredictionHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    @can_return_tuple
    def forward(  # type: ignore[override]
        self,
        input_ids: Tensor | NestedTensor,
        attention_mask: Tensor | None = None,
        position_ids: Tensor | None = None,
        inputs_embeds: Tensor | NestedTensor | None = None,
        encoder_hidden_states: Tensor | None = None,
        encoder_attention_mask: Tensor | None = None,
        labels: Tensor | None = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Tuple[Tensor, ...] | ContactPredictorOutput:
        if self.require_attentions:
            output_attentions = kwargs.get("output_attentions", self.config.output_attentions)
            if output_attentions is False:
                warn("output_attentions must be True since prediction head requires attentions.")
            kwargs["output_attentions"] = True
        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            return_dict=True,
            **kwargs,
        )

        output = self.ss_head(outputs, attention_mask, input_ids, labels=labels)
        logits, loss = output.logits, output.loss

        return ContactPredictorOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

RnaFmForSequencePrediction

Bases: RnaFmPreTrainedModel

Examples:

Python Console Session
>>> import torch
>>> from multimolecule import RnaFmConfig, RnaFmForSequencePrediction, RnaTokenizer
>>> config = RnaFmConfig()
>>> model = RnaFmForSequencePrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=torch.tensor([[1]]))
>>> output["logits"].shape
torch.Size([1, 1])
>>> output["loss"]
tensor(..., grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)
Source code in multimolecule/models/rnafm/modeling_rnafm.py
Python
class RnaFmForSequencePrediction(RnaFmPreTrainedModel):
    """
    Examples:
        >>> import torch
        >>> from multimolecule import RnaFmConfig, RnaFmForSequencePrediction, RnaTokenizer
        >>> config = RnaFmConfig()
        >>> model = RnaFmForSequencePrediction(config)
        >>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
        >>> input = tokenizer("ACGUN", return_tensors="pt")
        >>> output = model(**input, labels=torch.tensor([[1]]))
        >>> output["logits"].shape
        torch.Size([1, 1])
        >>> output["loss"]  # doctest:+ELLIPSIS
        tensor(..., grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)
    """

    def __init__(self, config: RnaFmConfig):
        super().__init__(config)
        self.model = RnaFmModel(config)
        self.sequence_head = SequencePredictionHead(config)
        self.head_config = self.sequence_head.config

        # Initialize weights and apply final processing
        self.post_init()

    @can_return_tuple
    def forward(
        self,
        input_ids: Tensor | NestedTensor | None = None,
        attention_mask: Tensor | None = None,
        position_ids: Tensor | None = None,
        inputs_embeds: Tensor | NestedTensor | None = None,
        labels: Tensor | None = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Tuple[Tensor, ...] | SequencePredictorOutput:
        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            return_dict=True,
            **kwargs,
        )
        output = self.sequence_head(outputs, labels)
        logits, loss = output.logits, output.loss

        return SequencePredictorOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

RnaFmForTokenPrediction

Bases: RnaFmPreTrainedModel

Examples:

Python Console Session
>>> import torch
>>> from multimolecule import RnaFmConfig, RnaFmForTokenPrediction, RnaTokenizer
>>> config = RnaFmConfig()
>>> model = RnaFmForTokenPrediction(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input, labels=torch.randint(2, (1, 5)))
>>> output["logits"].shape
torch.Size([1, 5, 1])
>>> output["loss"]
tensor(..., grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)
Source code in multimolecule/models/rnafm/modeling_rnafm.py
Python
class RnaFmForTokenPrediction(RnaFmPreTrainedModel):
    """
    Examples:
        >>> import torch
        >>> from multimolecule import RnaFmConfig, RnaFmForTokenPrediction, RnaTokenizer
        >>> config = RnaFmConfig()
        >>> model = RnaFmForTokenPrediction(config)
        >>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
        >>> input = tokenizer("ACGUN", return_tensors="pt")
        >>> output = model(**input, labels=torch.randint(2, (1, 5)))
        >>> output["logits"].shape
        torch.Size([1, 5, 1])
        >>> output["loss"]  # doctest:+ELLIPSIS
        tensor(..., grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)
    """

    def __init__(self, config: RnaFmConfig):
        super().__init__(config)
        self.model = RnaFmModel(config, add_pooling_layer=False)
        self.token_head = TokenPredictionHead(config)
        self.head_config = self.token_head.config

        # Initialize weights and apply final processing
        self.post_init()

    @can_return_tuple
    def forward(
        self,
        input_ids: Tensor | NestedTensor | None = None,
        attention_mask: Tensor | None = None,
        position_ids: Tensor | None = None,
        inputs_embeds: Tensor | NestedTensor | None = None,
        labels: Tensor | None = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Tuple[Tensor, ...] | TokenPredictorOutput:
        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            inputs_embeds=inputs_embeds,
            return_dict=True,
            **kwargs,
        )
        output = self.token_head(outputs, attention_mask, input_ids, labels)
        logits, loss = output.logits, output.loss

        return TokenPredictorOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

RnaFmModel

Bases: RnaFmPreTrainedModel

Examples:

Python Console Session
>>> import torch
>>> from multimolecule import RnaFmConfig, RnaFmModel, RnaTokenizer
>>> config = RnaFmConfig()
>>> model = RnaFmModel(config)
>>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
>>> input = tokenizer("ACGUN", return_tensors="pt")
>>> output = model(**input)
>>> output["last_hidden_state"].shape
torch.Size([1, 7, 640])
>>> output["pooler_output"].shape
torch.Size([1, 640])
Source code in multimolecule/models/rnafm/modeling_rnafm.py
Python
class RnaFmModel(RnaFmPreTrainedModel):
    """
    Examples:
        >>> import torch
        >>> from multimolecule import RnaFmConfig, RnaFmModel, RnaTokenizer
        >>> config = RnaFmConfig()
        >>> model = RnaFmModel(config)
        >>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna")
        >>> input = tokenizer("ACGUN", return_tensors="pt")
        >>> output = model(**input)
        >>> output["last_hidden_state"].shape
        torch.Size([1, 7, 640])
        >>> output["pooler_output"].shape
        torch.Size([1, 640])
    """

    def __init__(self, config: RnaFmConfig, add_pooling_layer: bool = True):
        super().__init__(config)
        self.pad_token_id = config.pad_token_id
        self.gradient_checkpointing = False
        self.embeddings = RnaFmEmbeddings(config)
        self.encoder = RnaFmEncoder(config)
        self.pooler = RnaFmPooler(config) if add_pooling_layer else None

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    @check_model_inputs
    def forward(
        self,
        input_ids: Tensor | NestedTensor | None = None,
        attention_mask: Tensor | None = None,
        position_ids: Tensor | None = None,
        inputs_embeds: Tensor | NestedTensor | None = None,
        encoder_hidden_states: Tensor | None = None,
        encoder_attention_mask: Tensor | None = None,
        past_key_values: Cache | None = None,
        use_cache: bool | None = None,
        cache_position: Tensor | None = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Tuple[Tensor, ...] | BaseModelOutputWithPoolingAndCrossAttentions:
        r"""
        Args:
            encoder_hidden_states:
                Shape: `(batch_size, sequence_length, hidden_size)`

                Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
                the model is configured as a decoder.
            encoder_attention_mask:
                Shape: `(batch_size, sequence_length)`

                Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
                in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.
            past_key_values:
                Tuple of length `config.n_layers` with each tuple having 4 tensors of shape
                `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)

                Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up
                decoding.

                If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
                that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
                all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
            use_cache:
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        """
        if self.config.is_decoder:
            use_cache = use_cache if use_cache is not None else self.config.use_cache
        else:
            use_cache = False
        if use_cache and past_key_values is None:
            past_key_values = (
                EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config))
                if encoder_hidden_states is not None or self.config.is_encoder_decoder
                else DynamicCache(config=self.config)
            )

        if isinstance(input_ids, NestedTensor) and attention_mask is None:
            attention_mask = input_ids.mask
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
        if input_ids is not None:
            device = input_ids.device
            seq_length = input_ids.shape[1]
        else:
            device = inputs_embeds.device  # type: ignore[union-attr]
            seq_length = inputs_embeds.shape[1]  # type: ignore[union-attr]

        # past_key_values_length
        past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
        if cache_position is None:
            cache_position = torch.arange(past_key_values_length, past_key_values_length + seq_length, device=device)

        if attention_mask is None and input_ids is not None and self.pad_token_id is not None:
            attention_mask = input_ids.ne(self.pad_token_id)

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )
        attention_mask, encoder_attention_mask = self._create_attention_masks(
            attention_mask=attention_mask,
            encoder_attention_mask=encoder_attention_mask,
            embedding_output=embedding_output,
            encoder_hidden_states=encoder_hidden_states,
            cache_position=cache_position,
            past_key_values=past_key_values,
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask,
            encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            cache_position=cache_position,
            position_ids=position_ids,
            **kwargs,
        )
        sequence_output = encoder_outputs.last_hidden_state
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
        )

    def _create_attention_masks(
        self,
        attention_mask,
        encoder_attention_mask,
        embedding_output,
        encoder_hidden_states,
        cache_position,
        past_key_values,
    ):
        if self.config.is_decoder:
            attention_mask = create_causal_mask(
                config=self.config,
                input_embeds=embedding_output,
                attention_mask=attention_mask,
                cache_position=cache_position,
                past_key_values=past_key_values,
            )
        else:
            attention_mask = create_bidirectional_mask(
                config=self.config, input_embeds=embedding_output, attention_mask=attention_mask
            )

        if encoder_attention_mask is not None:
            encoder_attention_mask = create_bidirectional_mask(
                config=self.config,
                input_embeds=embedding_output,
                attention_mask=encoder_attention_mask,
                encoder_hidden_states=encoder_hidden_states,
            )

        return attention_mask, encoder_attention_mask

forward

Python
forward(
    input_ids: Tensor | NestedTensor | None = None,
    attention_mask: Tensor | None = None,
    position_ids: Tensor | None = None,
    inputs_embeds: Tensor | NestedTensor | None = None,
    encoder_hidden_states: Tensor | None = None,
    encoder_attention_mask: Tensor | None = None,
    past_key_values: Cache | None = None,
    use_cache: bool | None = None,
    cache_position: Tensor | None = None,
    **kwargs: Unpack[TransformersKwargs]
) -> (
    Tuple[Tensor, ...]
    | BaseModelOutputWithPoolingAndCrossAttentions
)

Parameters:

Name Type Description Default
encoder_hidden_states
Tensor | None

Shape: (batch_size, sequence_length, hidden_size)

Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

None
encoder_attention_mask
Tensor | None

Shape: (batch_size, sequence_length)

Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,
  • 0 for tokens that are masked.
None
past_key_values
Cache | None

Tuple of length config.n_layers with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)

Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.

If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length).

None
use_cache
bool | None

If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values).

None
Source code in multimolecule/models/rnafm/modeling_rnafm.py
Python
@check_model_inputs
def forward(
    self,
    input_ids: Tensor | NestedTensor | None = None,
    attention_mask: Tensor | None = None,
    position_ids: Tensor | None = None,
    inputs_embeds: Tensor | NestedTensor | None = None,
    encoder_hidden_states: Tensor | None = None,
    encoder_attention_mask: Tensor | None = None,
    past_key_values: Cache | None = None,
    use_cache: bool | None = None,
    cache_position: Tensor | None = None,
    **kwargs: Unpack[TransformersKwargs],
) -> Tuple[Tensor, ...] | BaseModelOutputWithPoolingAndCrossAttentions:
    r"""
    Args:
        encoder_hidden_states:
            Shape: `(batch_size, sequence_length, hidden_size)`

            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask:
            Shape: `(batch_size, sequence_length)`

            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
            in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        past_key_values:
            Tuple of length `config.n_layers` with each tuple having 4 tensors of shape
            `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)

            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up
            decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
            that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
            all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        use_cache:
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
            (see `past_key_values`).
    """
    if self.config.is_decoder:
        use_cache = use_cache if use_cache is not None else self.config.use_cache
    else:
        use_cache = False
    if use_cache and past_key_values is None:
        past_key_values = (
            EncoderDecoderCache(DynamicCache(config=self.config), DynamicCache(config=self.config))
            if encoder_hidden_states is not None or self.config.is_encoder_decoder
            else DynamicCache(config=self.config)
        )

    if isinstance(input_ids, NestedTensor) and attention_mask is None:
        attention_mask = input_ids.mask
    if (input_ids is None) ^ (inputs_embeds is not None):
        raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
    if input_ids is not None:
        device = input_ids.device
        seq_length = input_ids.shape[1]
    else:
        device = inputs_embeds.device  # type: ignore[union-attr]
        seq_length = inputs_embeds.shape[1]  # type: ignore[union-attr]

    # past_key_values_length
    past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
    if cache_position is None:
        cache_position = torch.arange(past_key_values_length, past_key_values_length + seq_length, device=device)

    if attention_mask is None and input_ids is not None and self.pad_token_id is not None:
        attention_mask = input_ids.ne(self.pad_token_id)

    embedding_output = self.embeddings(
        input_ids=input_ids,
        position_ids=position_ids,
        attention_mask=attention_mask,
        inputs_embeds=inputs_embeds,
        past_key_values_length=past_key_values_length,
    )
    attention_mask, encoder_attention_mask = self._create_attention_masks(
        attention_mask=attention_mask,
        encoder_attention_mask=encoder_attention_mask,
        embedding_output=embedding_output,
        encoder_hidden_states=encoder_hidden_states,
        cache_position=cache_position,
        past_key_values=past_key_values,
    )
    encoder_outputs = self.encoder(
        embedding_output,
        attention_mask,
        encoder_hidden_states,
        encoder_attention_mask=encoder_attention_mask,
        past_key_values=past_key_values,
        use_cache=use_cache,
        cache_position=cache_position,
        position_ids=position_ids,
        **kwargs,
    )
    sequence_output = encoder_outputs.last_hidden_state
    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

    return BaseModelOutputWithPoolingAndCrossAttentions(
        last_hidden_state=sequence_output,
        pooler_output=pooled_output,
        past_key_values=encoder_outputs.past_key_values,
    )

RnaFmPreTrainedModel

Bases: PreTrainedModel

An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.

Source code in multimolecule/models/rnafm/modeling_rnafm.py
Python
class RnaFmPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = RnaFmConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _supports_flash_attn = True
    _supports_sdpa = True
    _supports_flex_attn = True
    _supports_attention_backend = True
    _can_record_outputs: dict[str, Any] | None = None
    _no_split_modules = ["RnaFmLayer", "RnaFmEmbeddings"]

    @torch.no_grad()
    def _init_weights(self, module: nn.Module):
        super()._init_weights(module)
        if isinstance(module, RnaFmEmbeddings):
            init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))