The MultiMolecule team is aware of a potential risk in reproducing the results of RNA-MSM.
The original implementation of RNA-MSM used a custom tokenizer that does not append <eos> token to the end of the input sequence in consistent to MSA Transformer.
This should not affect the performance of the model in most cases, but it can lead to unexpected behavior in some cases.
Please set eos_token = None in the tokenizer and set eos_token_id=None in the model configuration if you want the exact behavior of the original implementation.
The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.
The team releasing RNA-MSM did not write this model card for this model so this model card has been written by the MultiMolecule team.
RNA-MSM is a bert-style model.
RNA-MSM follows the MSA architecture, where it uses a column-wise attention and a row-wise attention to reduce the computational complexity over conventional self-attention.
RNA-MSM is pre-trained on a large corpus of non-coding RNA sequences with multiple sequence alignment (MSA) in a self-supervised fashion.
This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts.
Please refer to the Training Details section for more information on the training process.
Developed by: Yikun Zhang, Mei Lang, Jiuhong Jiang, Zhiqiang Gao, Fan Xu, Thomas Litfin, Ke Chen, Jaswinder Singh, Xiansong Huang, Guoli Song, Yonghong Tian, Jian Zhan, Jie Chen, Yaoqi Zhou
>>>importmultimolecule# you must import multimolecule to register models>>>fromtransformersimportpipeline>>>unmasker=pipeline("fill-mask",model="multimolecule/rnamsm")>>>unmasker("gguc<mask>cucugguuagaccagaucugagccu")[{'score':0.25111356377601624,'token':9,'token_str':'U','sequence':'G G U C U C U C U G G U U A G A C C A G A U C U G A G C C U'},{'score':0.1200353354215622,'token':14,'token_str':'W','sequence':'G G U C W C U C U G G U U A G A C C A G A U C U G A G C C U'},{'score':0.10132723301649094,'token':15,'token_str':'K','sequence':'G G U C K C U C U G G U U A G A C C A G A U C U G A G C C U'},{'score':0.08383019268512726,'token':18,'token_str':'D','sequence':'G G U C D C U C U G G U U A G A C C A G A U C U G A G C C U'},{'score':0.05737845227122307,'token':6,'token_str':'A','sequence':'G G U C A C U C U G G U U A G A C C A G A U C U G A G C C U'}]
>>>importmultimolecule# you must import multimolecule to register models>>>fromtransformersimportpipeline>>>predictor=pipeline("rna-secondary-structure",model="multimolecule/rnamsm")>>>predictor("ggucuc"){'sequence':'G G U C U C','secondary_structure':'......','contact_map':[[0.00261497194878757,0.0022659720852971077,0.0036333396565169096,0.003973186947405338,0.0034661777317523956,0.0029443716630339622],[0.0022659730166196823,0.002837304025888443,0.003722205525264144,0.0034382310695946217,0.003498978214338422,0.0030326189007610083],[0.0036333396565169096,0.003722205525264144,0.0026848132256418467,0.002787571167573333,0.0028246103320270777,0.0030541368760168552],[0.003973186947405338,0.0034382310695946217,0.002787571167573333,0.0028833637479692698,0.0027405587024986744,0.0029016658663749695],[0.0034661777317523956,0.003498978214338422,0.0028246103320270777,0.0027405587024986744,0.002930478658527136,0.003173925681039691],[0.0029443716630339622,0.0030326189007610083,0.0030541368760168552,0.0029016658663749695,0.003173925681039691,0.003476995974779129]]}
This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.
Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:
This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for token classification or regression.
Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:
This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.
Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:
RNA-MSM used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
The RNA-MSM model was pre-trained on Rfam.
The Rfam database is a collection of RNA sequence families of structural RNAs including non-coding RNA genes as well as cis-regulatory elements.
RNA-MSM used Rfam 14.7 which contains 4,069 RNA families.
To avoid potential overfitting in structural inference, RNA-MSM excluded families with experimentally determined structures, such as ribosomal RNAs, transfer RNAs, and small nuclear RNAs. The final dataset contains 3,932 RNA families. The median value for the number of MSA sequences for these families by RNAcmap3 is 2,184.
To increase the number of homologous sequences, RNA-MSM used an automatic pipeline, RNAcmap3, for homolog search and sequence alignment. RNAcmap3 is a pipeline that combines the BLAST-N, INFERNAL, Easel, RNAfold and evolutionary coupling tools to generate homologous sequences.
RNA-MSM preprocessed all tokens by replacing “T”s with “U”s and substituting “R”, “Y”, “K”, “M”, “S”, “W”, “B”, “D”, “H”, “V”, “N” with “X”.
Note that RnaTokenizer will convert “T”s to “U”s for you, you may disable this behaviour by passing replace_T_with_U=False. RnaTokenizer does not perform other substitutions.
@article{zhang2023multiple,author={Zhang, Yikun and Lang, Mei and Jiang, Jiuhong and Gao, Zhiqiang and Xu, Fan and Litfin, Thomas and Chen, Ke and Singh, Jaswinder and Huang, Xiansong and Song, Guoli and Tian, Yonghong and Zhan, Jian and Chen, Jie and Zhou, Yaoqi},title="{Multiple sequence alignment-based RNA language model and its application to structural inference}",journal={Nucleic Acids Research},volume={52},number={1},pages={e3-e3},year={2023},month={11},abstract="{Compared with proteins, DNA and RNA are more difficult languages to interpret because four-letter coded DNA/RNA sequences have less information content than 20-letter coded protein sequences. While BERT (Bidirectional Encoder Representations from Transformers)-like language models have been developed for RNA, they are ineffective at capturing the evolutionary information from homologous sequences because unlike proteins, RNA sequences are less conserved. Here, we have developed an unsupervised multiple sequence alignment-based RNA language model (RNA-MSM) by utilizing homologous sequences from an automatic pipeline, RNAcmap, as it can provide significantly more homologous sequences than manually annotated Rfam. We demonstrate that the resulting unsupervised, two-dimensional attention maps and one-dimensional embeddings from RNA-MSM contain structural information. In fact, they can be directly mapped with high accuracy to 2D base pairing probabilities and 1D solvent accessibilities, respectively. Further fine-tuning led to significantly improved performance on these two downstream tasks compared with existing state-of-the-art techniques including SPOT-RNA2 and RNAsnap2. By comparison, RNA-FM, a BERT-based RNA language model, performs worse than one-hot encoding with its embedding in base pair and solvent-accessible surface area prediction. We anticipate that the pre-trained RNA-MSM model can be fine-tuned on many other tasks related to RNA structure and function.}",doi={10.1093/nar/gkad1031},url={https://doi.org/10.1093/nar/gkad1031},eprint={https://academic.oup.com/nar/article-pdf/52/1/e3/55443207/gkad1031.pdf},}
classRnaTokenizer(Tokenizer):""" Tokenizer for RNA sequences. Args: alphabet: alphabet to use for tokenization. - If is `None`, the standard RNA alphabet will be used. - If is a `string`, it should correspond to the name of a predefined alphabet. The options include + `standard` + `extended` + `streamline` + `nucleobase` - If is an alphabet or a list of characters, that specific alphabet will be used. nmers: Size of kmer to tokenize. codon: Whether to tokenize into codons. replace_T_with_U: Whether to replace T with U. do_upper_case: Whether to convert input to uppercase. Examples: >>> from multimolecule import RnaTokenizer >>> tokenizer = RnaTokenizer() >>> tokenizer('<pad><cls><eos><unk><mask><null>ACGUNRYSWKMBDHV.X*-I')["input_ids"] [1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 2] >>> tokenizer('acgu')["input_ids"] [1, 6, 7, 8, 9, 2] >>> tokenizer('acgt')["input_ids"] [1, 6, 7, 8, 9, 2] >>> tokenizer = RnaTokenizer(replace_T_with_U=False) >>> tokenizer('acgt')["input_ids"] [1, 6, 7, 8, 3, 2] >>> tokenizer = RnaTokenizer(nmers=3) >>> tokenizer('uagcuuauc')["input_ids"] [1, 83, 17, 64, 49, 96, 84, 22, 2] >>> tokenizer = RnaTokenizer(codon=True) >>> tokenizer('uagcuuauc')["input_ids"] [1, 83, 49, 22, 2] >>> tokenizer('uagcuuauca')["input_ids"] Traceback (most recent call last): ValueError: length of input sequence must be a multiple of 3 for codon tokenization, but got 10 """model_input_names=["input_ids","attention_mask"]def__init__(self,alphabet:Alphabet|str|List[str]|None=None,nmers:int=1,codon:bool=False,replace_T_with_U:bool=True,do_upper_case:bool=True,additional_special_tokens:List|Tuple|None=None,**kwargs,):ifcodonand(nmers>1andnmers!=3):raiseValueError("Codon and nmers cannot be used together.")ifcodon:nmers=3# set to 3 to get correct vocabifnotisinstance(alphabet,Alphabet):alphabet=get_alphabet(alphabet,nmers=nmers)super().__init__(alphabet=alphabet,nmers=nmers,codon=codon,replace_T_with_U=replace_T_with_U,do_upper_case=do_upper_case,additional_special_tokens=additional_special_tokens,**kwargs,)self.replace_T_with_U=replace_T_with_Uself.nmers=nmersself.codon=codondef_tokenize(self,text:str,**kwargs):ifself.do_upper_case:text=text.upper()ifself.replace_T_with_U:text=text.replace("T","U")ifself.codon:iflen(text)%3!=0:raiseValueError(f"length of input sequence must be a multiple of 3 for codon tokenization, but got {len(text)}")return[text[i:i+3]foriinrange(0,len(text),3)]ifself.nmers>1:return[text[i:i+self.nmers]foriinrange(len(text)-self.nmers+1)]# noqa: E203returnlist(text)
This is the configuration class to store the configuration of a RnaMsmModel.
It is used to instantiate a RnaMsm model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the RnaMsm
yikunpku/RNA-MSM architecture.
Configuration objects inherit from PreTrainedConfig and can be used to
control the model outputs. Read the documentation from PreTrainedConfig
for more information.
Vocabulary size of the RnaMsm model. Defines the number of different tokens that can be represented by the
inputs_ids passed when calling [RnaMsmModel].
>>> frommultimoleculeimportRnaMsmConfig,RnaMsmModel>>> # Initializing a RNA-MSM multimolecule/rnamsm style configuration>>> configuration=RnaMsmConfig()>>> # Initializing a model (with random weights) from the multimolecule/rnamsm style configuration>>> model=RnaMsmModel(configuration)>>> # Accessing the model configuration>>> configuration=model.config
Source code in multimolecule/models/rnamsm/configuration_rnamsm.py
classRnaMsmConfig(PreTrainedConfig):r""" This is the configuration class to store the configuration of a [`RnaMsmModel`][multimolecule.models.RnaMsmModel]. It is used to instantiate a RnaMsm model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RnaMsm [yikunpku/RNA-MSM](https://github.com/yikunpku/RNA-MSM) architecture. Configuration objects inherit from [`PreTrainedConfig`][multimolecule.models.PreTrainedConfig] and can be used to control the model outputs. Read the documentation from [`PreTrainedConfig`][multimolecule.models.PreTrainedConfig] for more information. Args: vocab_size: Vocabulary size of the RnaMsm model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RnaMsmModel`]. hidden_size: Dimensionality of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout: The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range: The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps: The epsilon used by the layer normalization layers. position_embedding_type: Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder: Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache: Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. head: The configuration of the head. lm_head: The configuration of the masked language model head. Examples: >>> from multimolecule import RnaMsmConfig, RnaMsmModel >>> # Initializing a RNA-MSM multimolecule/rnamsm style configuration >>> configuration = RnaMsmConfig() >>> # Initializing a model (with random weights) from the multimolecule/rnamsm style configuration >>> model = RnaMsmModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config """model_type="rnamsm"def__init__(self,vocab_size:int=26,hidden_size:int=768,num_hidden_layers:int=10,num_attention_heads:int=12,intermediate_size:int=3072,hidden_act:str="gelu",hidden_dropout:float=0.1,attention_dropout:float=0.1,max_position_embeddings:int=1024,initializer_range:float=0.02,layer_norm_eps:float=1e-12,position_embedding_type:str="absolute",is_decoder:bool=False,use_cache:bool=True,max_tokens_per_msa:int=2**14,layer_type:str="standard",attention_type:str="standard",embed_positions_msa:bool=True,attention_bias:bool=True,head:HeadConfig|None=None,lm_head:MaskedLMHeadConfig|None=None,**kwargs,):super().__init__(**kwargs)self.vocab_size=vocab_sizeself.hidden_size=hidden_sizeself.num_hidden_layers=num_hidden_layersself.num_attention_heads=num_attention_headsself.intermediate_size=intermediate_sizeself.hidden_act=hidden_actself.hidden_dropout=hidden_dropoutself.attention_dropout=attention_dropoutself.max_position_embeddings=max_position_embeddingsself.initializer_range=initializer_rangeself.layer_norm_eps=layer_norm_epsself.position_embedding_type=position_embedding_typeself.is_decoder=is_decoderself.use_cache=use_cacheself.max_tokens_per_msa=max_tokens_per_msaself.layer_type=layer_typeself.attention_type=attention_typeself.embed_positions_msa=embed_positions_msaself.attention_bias=attention_biasself.head=HeadConfig(**head)ifheadisnotNoneelseNoneself.lm_head=MaskedLMHeadConfig(**lm_head)iflm_headisnotNoneelseNone
classRnaMsmModel(RnaMsmPreTrainedModel):""" Examples: >>> from multimolecule import RnaMsmConfig, RnaMsmModel, RnaTokenizer >>> config = RnaMsmConfig() >>> model = RnaMsmModel(config) >>> tokenizer = RnaTokenizer.from_pretrained("multimolecule/rna") >>> input = tokenizer("ACGUN", return_tensors="pt") >>> output = model(**input) >>> output["last_hidden_state"].shape torch.Size([1, 7, 768]) >>> output["pooler_output"].shape torch.Size([1, 768]) """def__init__(self,config:RnaMsmConfig,add_pooling_layer:bool=True):super().__init__(config)self.pad_token_id=config.pad_token_idself.embeddings=RnaMsmEmbeddings(config)self.encoder=RnaMsmEncoder(config)self.pooler=RnaMsmPooler(config)ifadd_pooling_layerelseNone# Initialize weights and apply final processingself.post_init()defget_input_embeddings(self):returnself.embeddings.word_embeddingsdefset_input_embeddings(self,value):self.embeddings.word_embeddings=valuedefforward(self,input_ids:Tensor|NestedTensor,attention_mask:Tensor|None=None,position_ids:Tensor|None=None,inputs_embeds:Tensor|NestedTensor|None=None,output_attentions:bool|None=None,output_hidden_states:bool|None=None,return_dict:bool|None=None,**kwargs,)->Tuple[Tensor,...]|RnaMsmModelOutputWithPooling:ifkwargs:warn(f"Additional keyword arguments `{', '.join(kwargs)}` are detected in "f"`{self.__class__.__name__}.forward`, they will be ignored.\n""This is provided for backward compatibility and may lead to unexpected behavior.")output_attentions=output_attentionsifoutput_attentionsisnotNoneelseself.config.output_attentionsoutput_hidden_states=(output_hidden_statesifoutput_hidden_statesisnotNoneelseself.config.output_hidden_states)return_dict=return_dictifreturn_dictisnotNoneelseself.config.use_return_dictifisinstance(input_ids,NestedTensor):input_ids,attention_mask=input_ids.tensor,input_ids.maskifinput_idsisnotNoneandinputs_embedsisnotNone:raiseValueError("You cannot specify both input_ids and inputs_embeds at the same time")ifinput_idsisnotNone:self.warn_if_padding_and_no_attention_mask(input_ids,attention_mask)elifinputs_embedsisNone:raiseValueError("You have to specify either input_ids or inputs_embeds")ifattention_maskisNone:attention_mask=(input_ids.ne(self.pad_token_id)ifself.pad_token_idisnotNoneelsetorch.ones_like(input_ids))unsqueeze_input=input_ids.ndim==2ifunsqueeze_input:input_ids=input_ids.unsqueeze(1)ifattention_mask.ndim==2:attention_mask=attention_mask.unsqueeze(1)embedding_output=self.embeddings(input_ids=input_ids,position_ids=position_ids,attention_mask=attention_mask,inputs_embeds=inputs_embeds,)encoder_outputs=self.encoder(embedding_output,attention_mask=attention_mask,output_attentions=output_attentions,output_hidden_states=output_hidden_states,return_dict=return_dict,)sequence_output=encoder_outputs[0]ifunsqueeze_input:sequence_output=sequence_output.squeeze(1)pooled_output=self.pooler(sequence_output)ifself.poolerisnotNoneelseNoneifnotreturn_dict:return(sequence_output,pooled_output)+encoder_outputs[1:]returnRnaMsmModelOutputWithPooling(last_hidden_state=sequence_output,pooler_output=pooled_output,hidden_states=encoder_outputs.hidden_states,col_attentions=encoder_outputs.col_attentions,row_attentions=encoder_outputs.row_attentions,)
classRnaMsmPreTrainedModel(PreTrainedModel):""" An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """config_class=RnaMsmConfigbase_model_prefix="rnamsm"supports_gradient_checkpointing=True_no_split_modules=["RnaMsmLayer","RnaMsmAxialLayer","RnaMsmPkmLayer","RnaMsmEmbeddings"]# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weightsdef_init_weights(self,module:nn.Module):"""Initialize the weights"""ifisinstance(module,nn.Linear):# Slightly different from the TF version which uses truncated_normal for initialization# cf https://github.com/pytorch/pytorch/pull/5617module.weight.data.normal_(mean=0.0,std=self.config.initializer_range)ifmodule.biasisnotNone:module.bias.data.zero_()elifisinstance(module,nn.Embedding):module.weight.data.normal_(mean=0.0,std=self.config.initializer_range)ifmodule.padding_idxisnotNone:module.weight.data[module.padding_idx].zero_()elifisinstance(module,nn.LayerNorm)andmodule.elementwise_affine:module.bias.data.zero_()module.weight.data.fill_(1.0)